![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6718 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | ffvelcdm 7084 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3147 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 513 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | simpl 484 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | fvelrnb 6953 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
7 | 6 | biimpd 228 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
8 | nfra1 3282 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
9 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
10 | rsp 3245 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
11 | eleq1 2822 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
12 | 11 | biimpcd 248 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
14 | 8, 9, 13 | rexlimd 3264 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
15 | 7, 14 | sylan9 509 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
16 | 15 | ssrdv 3989 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
17 | df-f 6548 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
18 | 5, 16, 17 | sylanbrc 584 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
19 | 4, 18 | impbii 208 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ⊆ wss 3949 ran crn 5678 Fn wfn 6539 ⟶wf 6540 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 |
This theorem is referenced by: ffnfvf 7119 fnfvrnss 7120 fcdmssb 7121 fmpt2d 7123 fconstfv 7214 ffnov 7535 seqomlem2 8451 naddf 8680 elixpconst 8899 elixpsn 8931 unblem4 9298 ordtypelem4 9516 oismo 9535 cantnfvalf 9660 rankf 9789 alephon 10064 alephf1 10080 alephf1ALT 10098 alephfplem4 10102 cfsmolem 10265 infpssrlem3 10300 axcc4 10434 domtriomlem 10437 pwfseqlem3 10655 gch3 10671 inar1 10770 peano5nni 12215 cnref1o 12969 seqf2 13987 hashkf 14292 iswrdsymb 14481 ccatrn 14539 shftf 15026 sqrtf 15310 isercoll2 15615 eff2 16042 reeff1 16063 1arith 16860 ramcl 16962 xpscf 17511 dmaf 17999 cdaf 18000 coapm 18021 odf 19405 gsumpt 19830 dprdff 19882 dprdfcntz 19885 dprdfadd 19890 dprdlub 19896 mgpf 20071 prdscrngd 20135 isabvd 20428 psgnghm 21133 frlmsslsp 21351 psrbagcon 21483 psrbagconOLD 21484 mvrf2 21552 subrgmvrf 21589 mplbas2 21597 kqf 23251 fmf 23449 tmdgsum2 23600 prdstmdd 23628 prdstgpd 23629 prdsxmslem2 24038 metdsre 24369 evth 24475 evthicc2 24977 ovolfsf 24988 ovolf 24999 vitalilem2 25126 vitalilem5 25129 0plef 25189 mbfi1fseqlem4 25236 xrge0f 25249 itg2addlem 25276 dvfre 25468 dvne0 25528 mdegxrf 25586 mtest 25916 psercn 25938 recosf1o 26044 logcn 26155 amgm 26495 emcllem7 26506 dchrfi 26758 dchr1re 26766 dchrisum0re 27016 padicabvf 27134 addsf 27466 negsf 27526 vtxdgfisf 28733 hlimf 30490 pjrni 30955 pjmf1 30969 2ndresdju 31874 nsgmgc 32523 reprinfz1 33634 reprdifc 33639 bnj149 33886 subfacp1lem3 34173 mrsubrn 34504 msrf 34533 mclsind 34561 neibastop2lem 35245 rrncmslem 36700 cdlemk56 39842 sticksstones22 40984 hbtlem7 41867 dgraaf 41889 deg1mhm 41949 elixpconstg 43778 elmapsnd 43903 unirnmap 43907 resincncf 44591 dvnprodlem1 44662 volioof 44703 voliooicof 44712 qndenserrnbllem 45010 subsaliuncllem 45073 fge0iccico 45086 elhoi 45258 ovnsubaddlem1 45286 hoiqssbllem3 45340 ovolval4lem1 45365 rngmgpf 46653 rrx2xpref1o 47404 |
Copyright terms: Public domain | W3C validator |