| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version | ||
| Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6688 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | ffvelcdm 7053 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
| 3 | 2 | ralrimiva 3125 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
| 6 | fvelrnb 6921 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
| 7 | 6 | biimpd 229 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
| 8 | nfra1 3261 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
| 9 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
| 10 | rsp 3225 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
| 11 | eleq1 2816 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 12 | 11 | biimpcd 249 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
| 14 | 8, 9, 13 | rexlimd 3244 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 15 | 7, 14 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
| 16 | 15 | ssrdv 3952 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| 17 | df-f 6515 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 18 | 5, 16, 17 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
| 19 | 4, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ran crn 5639 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: ffnfvf 7092 fnfvrnss 7093 fcdmssb 7094 fmpt2d 7096 fssrescdmd 7098 fconstfv 7186 ffnov 7515 seqomlem2 8419 naddf 8645 elixpconst 8878 elixpsn 8910 unblem4 9242 ordtypelem4 9474 oismo 9493 cantnfvalf 9618 rankf 9747 alephon 10022 alephf1 10038 alephf1ALT 10056 alephfplem4 10060 cfsmolem 10223 infpssrlem3 10258 axcc4 10392 domtriomlem 10395 pwfseqlem3 10613 gch3 10629 inar1 10728 peano5nni 12189 cnref1o 12944 seqf2 13986 hashkf 14297 iswrdsymb 14496 ccatrn 14554 shftf 15045 sqrtf 15330 isercoll2 15635 eff2 16067 reeff1 16088 1arith 16898 ramcl 17000 xpscf 17528 dmaf 18011 cdaf 18012 coapm 18033 odf 19467 gsumpt 19892 dprdff 19944 dprdfcntz 19947 dprdfadd 19952 dprdlub 19958 rngmgpf 20066 mgpf 20157 prdscrngd 20231 isabvd 20721 psgnghm 21489 frlmsslsp 21705 psrbagcon 21834 mvrf2 21902 subrgmvrf 21941 mplbas2 21949 kqf 23634 fmf 23832 tmdgsum2 23983 prdstmdd 24011 prdstgpd 24012 prdsxmslem2 24417 metdsre 24742 evth 24858 evthicc2 25361 ovolfsf 25372 ovolf 25383 vitalilem2 25510 vitalilem5 25513 0plef 25573 mbfi1fseqlem4 25619 xrge0f 25632 itg2addlem 25659 dvfre 25855 dvne0 25916 mdegxrf 25973 mtest 26313 psercn 26336 recosf1o 26444 logcn 26556 amgm 26901 emcllem7 26912 dchrfi 27166 dchr1re 27174 dchrisum0re 27424 padicabvf 27542 addsf 27889 negsf 27958 noseqind 28186 vtxdgfisf 29404 hlimf 31166 pjrni 31631 pjmf1 31645 2ndresdju 32573 nsgmgc 33383 reprinfz1 34613 reprdifc 34618 bnj149 34865 subfacp1lem3 35169 mrsubrn 35500 msrf 35529 mclsind 35557 neibastop2lem 36348 weiunlem2 36451 rrncmslem 37826 cdlemk56 40965 sticksstones22 42156 hbtlem7 43114 dgraaf 43136 deg1mhm 43189 elixpconstg 45083 elmapsnd 45198 unirnmap 45202 resincncf 45873 dvnprodlem1 45944 volioof 45985 voliooicof 45994 qndenserrnbllem 46292 subsaliuncllem 46355 fge0iccico 46368 elhoi 46540 ovnsubaddlem1 46568 hoiqssbllem3 46622 ovolval4lem1 46647 rrx2xpref1o 48707 oppff1 49137 fucofulem2 49300 |
| Copyright terms: Public domain | W3C validator |