| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version | ||
| Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6670 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | ffvelcdm 7035 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
| 3 | 2 | ralrimiva 3125 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
| 6 | fvelrnb 6903 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
| 7 | 6 | biimpd 229 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
| 8 | nfra1 3259 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
| 9 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
| 10 | rsp 3223 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
| 11 | eleq1 2816 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 12 | 11 | biimpcd 249 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
| 14 | 8, 9, 13 | rexlimd 3242 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 15 | 7, 14 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
| 16 | 15 | ssrdv 3949 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| 17 | df-f 6503 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 18 | 5, 16, 17 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
| 19 | 4, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 ran crn 5632 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 |
| This theorem is referenced by: ffnfvf 7074 fnfvrnss 7075 fcdmssb 7076 fmpt2d 7078 fssrescdmd 7080 fconstfv 7168 ffnov 7495 seqomlem2 8396 naddf 8622 elixpconst 8855 elixpsn 8887 unblem4 9218 ordtypelem4 9450 oismo 9469 cantnfvalf 9594 rankf 9723 alephon 9998 alephf1 10014 alephf1ALT 10032 alephfplem4 10036 cfsmolem 10199 infpssrlem3 10234 axcc4 10368 domtriomlem 10371 pwfseqlem3 10589 gch3 10605 inar1 10704 peano5nni 12165 cnref1o 12920 seqf2 13962 hashkf 14273 iswrdsymb 14472 ccatrn 14530 shftf 15021 sqrtf 15306 isercoll2 15611 eff2 16043 reeff1 16064 1arith 16874 ramcl 16976 xpscf 17504 dmaf 17991 cdaf 17992 coapm 18013 odf 19451 gsumpt 19876 dprdff 19928 dprdfcntz 19931 dprdfadd 19936 dprdlub 19942 rngmgpf 20077 mgpf 20168 prdscrngd 20242 isabvd 20732 psgnghm 21522 frlmsslsp 21738 psrbagcon 21867 mvrf2 21935 subrgmvrf 21974 mplbas2 21982 kqf 23667 fmf 23865 tmdgsum2 24016 prdstmdd 24044 prdstgpd 24045 prdsxmslem2 24450 metdsre 24775 evth 24891 evthicc2 25394 ovolfsf 25405 ovolf 25416 vitalilem2 25543 vitalilem5 25546 0plef 25606 mbfi1fseqlem4 25652 xrge0f 25665 itg2addlem 25692 dvfre 25888 dvne0 25949 mdegxrf 26006 mtest 26346 psercn 26369 recosf1o 26477 logcn 26589 amgm 26934 emcllem7 26945 dchrfi 27199 dchr1re 27207 dchrisum0re 27457 padicabvf 27575 addsf 27929 negsf 27998 noseqind 28226 vtxdgfisf 29457 hlimf 31216 pjrni 31681 pjmf1 31695 2ndresdju 32623 nsgmgc 33376 reprinfz1 34606 reprdifc 34611 bnj149 34858 subfacp1lem3 35162 mrsubrn 35493 msrf 35522 mclsind 35550 neibastop2lem 36341 weiunlem2 36444 rrncmslem 37819 cdlemk56 40958 sticksstones22 42149 hbtlem7 43107 dgraaf 43129 deg1mhm 43182 elixpconstg 45076 elmapsnd 45191 unirnmap 45195 resincncf 45866 dvnprodlem1 45937 volioof 45978 voliooicof 45987 qndenserrnbllem 46285 subsaliuncllem 46348 fge0iccico 46361 elhoi 46533 ovnsubaddlem1 46561 hoiqssbllem3 46615 ovolval4lem1 46640 rrx2xpref1o 48700 oppff1 49130 fucofulem2 49293 |
| Copyright terms: Public domain | W3C validator |