| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version | ||
| Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6711 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | ffvelcdm 7076 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
| 3 | 2 | ralrimiva 3133 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
| 6 | fvelrnb 6944 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
| 7 | 6 | biimpd 229 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
| 8 | nfra1 3270 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
| 9 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
| 10 | rsp 3234 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
| 11 | eleq1 2823 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 12 | 11 | biimpcd 249 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
| 14 | 8, 9, 13 | rexlimd 3253 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 15 | 7, 14 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
| 16 | 15 | ssrdv 3969 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| 17 | df-f 6540 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 18 | 5, 16, 17 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
| 19 | 4, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 ran crn 5660 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 |
| This theorem is referenced by: ffnfvf 7115 fnfvrnss 7116 fcdmssb 7117 fmpt2d 7119 fssrescdmd 7121 fconstfv 7209 ffnov 7538 seqomlem2 8470 naddf 8698 elixpconst 8924 elixpsn 8956 unblem4 9308 ordtypelem4 9540 oismo 9559 cantnfvalf 9684 rankf 9813 alephon 10088 alephf1 10104 alephf1ALT 10122 alephfplem4 10126 cfsmolem 10289 infpssrlem3 10324 axcc4 10458 domtriomlem 10461 pwfseqlem3 10679 gch3 10695 inar1 10794 peano5nni 12248 cnref1o 13006 seqf2 14044 hashkf 14355 iswrdsymb 14554 ccatrn 14612 shftf 15103 sqrtf 15387 isercoll2 15690 eff2 16122 reeff1 16143 1arith 16952 ramcl 17054 xpscf 17584 dmaf 18067 cdaf 18068 coapm 18089 odf 19523 gsumpt 19948 dprdff 20000 dprdfcntz 20003 dprdfadd 20008 dprdlub 20014 rngmgpf 20122 mgpf 20213 prdscrngd 20287 isabvd 20777 psgnghm 21545 frlmsslsp 21761 psrbagcon 21890 mvrf2 21958 subrgmvrf 21997 mplbas2 22005 kqf 23690 fmf 23888 tmdgsum2 24039 prdstmdd 24067 prdstgpd 24068 prdsxmslem2 24473 metdsre 24798 evth 24914 evthicc2 25418 ovolfsf 25429 ovolf 25440 vitalilem2 25567 vitalilem5 25570 0plef 25630 mbfi1fseqlem4 25676 xrge0f 25689 itg2addlem 25716 dvfre 25912 dvne0 25973 mdegxrf 26030 mtest 26370 psercn 26393 recosf1o 26501 logcn 26613 amgm 26958 emcllem7 26969 dchrfi 27223 dchr1re 27231 dchrisum0re 27481 padicabvf 27599 addsf 27946 negsf 28015 noseqind 28243 vtxdgfisf 29461 hlimf 31223 pjrni 31688 pjmf1 31702 2ndresdju 32632 nsgmgc 33432 reprinfz1 34659 reprdifc 34664 bnj149 34911 subfacp1lem3 35209 mrsubrn 35540 msrf 35569 mclsind 35597 neibastop2lem 36383 weiunlem2 36486 rrncmslem 37861 cdlemk56 40995 sticksstones22 42186 hbtlem7 43124 dgraaf 43146 deg1mhm 43199 elixpconstg 45093 elmapsnd 45208 unirnmap 45212 resincncf 45884 dvnprodlem1 45955 volioof 45996 voliooicof 46005 qndenserrnbllem 46303 subsaliuncllem 46366 fge0iccico 46379 elhoi 46551 ovnsubaddlem1 46579 hoiqssbllem3 46633 ovolval4lem1 46658 rrx2xpref1o 48678 fucofulem2 49202 |
| Copyright terms: Public domain | W3C validator |