| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version | ||
| Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6652 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | ffvelcdm 7015 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
| 3 | 2 | ralrimiva 3121 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
| 6 | fvelrnb 6883 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
| 7 | 6 | biimpd 229 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
| 8 | nfra1 3253 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
| 9 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
| 10 | rsp 3217 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
| 11 | eleq1 2816 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 12 | 11 | biimpcd 249 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
| 14 | 8, 9, 13 | rexlimd 3236 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 15 | 7, 14 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
| 16 | 15 | ssrdv 3941 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| 17 | df-f 6486 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 18 | 5, 16, 17 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
| 19 | 4, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3903 ran crn 5620 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 |
| This theorem is referenced by: ffnfvf 7054 fnfvrnss 7055 fcdmssb 7056 fmpt2d 7058 fssrescdmd 7060 fconstfv 7148 ffnov 7475 seqomlem2 8373 naddf 8599 elixpconst 8832 elixpsn 8864 unblem4 9184 ordtypelem4 9413 oismo 9432 cantnfvalf 9561 rankf 9690 alephon 9963 alephf1 9979 alephf1ALT 9997 alephfplem4 10001 cfsmolem 10164 infpssrlem3 10199 axcc4 10333 domtriomlem 10336 pwfseqlem3 10554 gch3 10570 inar1 10669 peano5nni 12131 cnref1o 12886 seqf2 13928 hashkf 14239 iswrdsymb 14438 ccatrn 14496 shftf 14986 sqrtf 15271 isercoll2 15576 eff2 16008 reeff1 16029 1arith 16839 ramcl 16941 xpscf 17469 dmaf 17956 cdaf 17957 coapm 17978 odf 19416 gsumpt 19841 dprdff 19893 dprdfcntz 19896 dprdfadd 19901 dprdlub 19907 rngmgpf 20042 mgpf 20133 prdscrngd 20207 isabvd 20697 psgnghm 21487 frlmsslsp 21703 psrbagcon 21832 mvrf2 21900 subrgmvrf 21939 mplbas2 21947 kqf 23632 fmf 23830 tmdgsum2 23981 prdstmdd 24009 prdstgpd 24010 prdsxmslem2 24415 metdsre 24740 evth 24856 evthicc2 25359 ovolfsf 25370 ovolf 25381 vitalilem2 25508 vitalilem5 25511 0plef 25571 mbfi1fseqlem4 25617 xrge0f 25630 itg2addlem 25657 dvfre 25853 dvne0 25914 mdegxrf 25971 mtest 26311 psercn 26334 recosf1o 26442 logcn 26554 amgm 26899 emcllem7 26910 dchrfi 27164 dchr1re 27172 dchrisum0re 27422 padicabvf 27540 addsf 27894 negsf 27963 noseqind 28191 vtxdgfisf 29422 hlimf 31181 pjrni 31646 pjmf1 31660 2ndresdju 32593 nsgmgc 33350 reprinfz1 34596 reprdifc 34601 bnj149 34848 subfacp1lem3 35165 mrsubrn 35496 msrf 35525 mclsind 35553 neibastop2lem 36344 weiunlem2 36447 rrncmslem 37822 cdlemk56 40960 sticksstones22 42151 hbtlem7 43108 dgraaf 43130 deg1mhm 43183 elixpconstg 45077 elmapsnd 45192 unirnmap 45196 resincncf 45866 dvnprodlem1 45937 volioof 45978 voliooicof 45987 qndenserrnbllem 46285 subsaliuncllem 46348 fge0iccico 46361 elhoi 46533 ovnsubaddlem1 46561 hoiqssbllem3 46615 ovolval4lem1 46640 rrx2xpref1o 48713 oppff1 49143 fucofulem2 49306 |
| Copyright terms: Public domain | W3C validator |