| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version | ||
| Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6735 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | ffvelcdm 7100 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
| 3 | 2 | ralrimiva 3145 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
| 6 | fvelrnb 6968 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
| 7 | 6 | biimpd 229 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
| 8 | nfra1 3283 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
| 9 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
| 10 | rsp 3246 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
| 11 | eleq1 2828 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 12 | 11 | biimpcd 249 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
| 14 | 8, 9, 13 | rexlimd 3265 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 15 | 7, 14 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
| 16 | 15 | ssrdv 3988 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| 17 | df-f 6564 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 18 | 5, 16, 17 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
| 19 | 4, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 ran crn 5685 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 |
| This theorem is referenced by: ffnfvf 7139 fnfvrnss 7140 fcdmssb 7141 fmpt2d 7143 fssrescdmd 7145 fconstfv 7233 ffnov 7560 seqomlem2 8492 naddf 8720 elixpconst 8946 elixpsn 8978 unblem4 9332 ordtypelem4 9562 oismo 9581 cantnfvalf 9706 rankf 9835 alephon 10110 alephf1 10126 alephf1ALT 10144 alephfplem4 10148 cfsmolem 10311 infpssrlem3 10346 axcc4 10480 domtriomlem 10483 pwfseqlem3 10701 gch3 10717 inar1 10816 peano5nni 12270 cnref1o 13028 seqf2 14063 hashkf 14372 iswrdsymb 14570 ccatrn 14628 shftf 15119 sqrtf 15403 isercoll2 15706 eff2 16136 reeff1 16157 1arith 16966 ramcl 17068 xpscf 17611 dmaf 18095 cdaf 18096 coapm 18117 odf 19556 gsumpt 19981 dprdff 20033 dprdfcntz 20036 dprdfadd 20041 dprdlub 20047 rngmgpf 20155 mgpf 20246 prdscrngd 20320 isabvd 20814 psgnghm 21599 frlmsslsp 21817 psrbagcon 21946 mvrf2 22014 subrgmvrf 22053 mplbas2 22061 kqf 23756 fmf 23954 tmdgsum2 24105 prdstmdd 24133 prdstgpd 24134 prdsxmslem2 24543 metdsre 24876 evth 24992 evthicc2 25496 ovolfsf 25507 ovolf 25518 vitalilem2 25645 vitalilem5 25648 0plef 25708 mbfi1fseqlem4 25754 xrge0f 25767 itg2addlem 25794 dvfre 25990 dvne0 26051 mdegxrf 26108 mtest 26448 psercn 26471 recosf1o 26578 logcn 26690 amgm 27035 emcllem7 27046 dchrfi 27300 dchr1re 27308 dchrisum0re 27558 padicabvf 27676 addsf 28016 negsf 28085 noseqind 28299 vtxdgfisf 29495 hlimf 31257 pjrni 31722 pjmf1 31736 2ndresdju 32660 nsgmgc 33441 reprinfz1 34638 reprdifc 34643 bnj149 34890 subfacp1lem3 35188 mrsubrn 35519 msrf 35548 mclsind 35576 neibastop2lem 36362 weiunlem2 36465 rrncmslem 37840 cdlemk56 40974 sticksstones22 42170 hbtlem7 43142 dgraaf 43164 deg1mhm 43217 elixpconstg 45099 elmapsnd 45214 unirnmap 45218 resincncf 45895 dvnprodlem1 45966 volioof 46007 voliooicof 46016 qndenserrnbllem 46314 subsaliuncllem 46377 fge0iccico 46390 elhoi 46562 ovnsubaddlem1 46590 hoiqssbllem3 46644 ovolval4lem1 46669 rrx2xpref1o 48644 fucofulem2 49029 |
| Copyright terms: Public domain | W3C validator |