| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version | ||
| Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
| Ref | Expression |
|---|---|
| ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6651 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 2 | ffvelcdm 7014 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
| 3 | 2 | ralrimiva 3124 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
| 6 | fvelrnb 6882 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
| 7 | 6 | biimpd 229 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
| 8 | nfra1 3256 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
| 9 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
| 10 | rsp 3220 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
| 11 | eleq1 2819 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 12 | 11 | biimpcd 249 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
| 14 | 8, 9, 13 | rexlimd 3239 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 15 | 7, 14 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
| 16 | 15 | ssrdv 3935 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
| 17 | df-f 6485 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 18 | 5, 16, 17 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
| 19 | 4, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ran crn 5615 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: ffnfvf 7053 fnfvrnss 7054 fcdmssb 7055 fmpt2d 7057 fssrescdmd 7059 fconstfv 7146 ffnov 7472 seqomlem2 8370 naddf 8596 elixpconst 8829 elixpsn 8861 unblem4 9179 ordtypelem4 9407 oismo 9426 cantnfvalf 9555 rankf 9687 alephon 9960 alephf1 9976 alephf1ALT 9994 alephfplem4 9998 cfsmolem 10161 infpssrlem3 10196 axcc4 10330 domtriomlem 10333 pwfseqlem3 10551 gch3 10567 inar1 10666 peano5nni 12128 cnref1o 12883 seqf2 13928 hashkf 14239 iswrdsymb 14438 ccatrn 14497 shftf 14986 sqrtf 15271 isercoll2 15576 eff2 16008 reeff1 16029 1arith 16839 ramcl 16941 xpscf 17469 dmaf 17956 cdaf 17957 coapm 17978 odf 19449 gsumpt 19874 dprdff 19926 dprdfcntz 19929 dprdfadd 19934 dprdlub 19940 rngmgpf 20075 mgpf 20166 prdscrngd 20240 isabvd 20727 psgnghm 21517 frlmsslsp 21733 psrbagcon 21862 mvrf2 21930 subrgmvrf 21969 mplbas2 21977 kqf 23662 fmf 23860 tmdgsum2 24011 prdstmdd 24039 prdstgpd 24040 prdsxmslem2 24444 metdsre 24769 evth 24885 evthicc2 25388 ovolfsf 25399 ovolf 25410 vitalilem2 25537 vitalilem5 25540 0plef 25600 mbfi1fseqlem4 25646 xrge0f 25659 itg2addlem 25686 dvfre 25882 dvne0 25943 mdegxrf 26000 mtest 26340 psercn 26363 recosf1o 26471 logcn 26583 amgm 26928 emcllem7 26939 dchrfi 27193 dchr1re 27201 dchrisum0re 27451 padicabvf 27569 addsf 27925 negsf 27994 noseqind 28222 vtxdgfisf 29455 hlimf 31217 pjrni 31682 pjmf1 31696 2ndresdju 32631 nsgmgc 33377 mplvrpmrhm 33577 reprinfz1 34635 reprdifc 34640 bnj149 34887 subfacp1lem3 35226 mrsubrn 35557 msrf 35586 mclsind 35614 neibastop2lem 36404 weiunlem2 36507 rrncmslem 37882 cdlemk56 41080 sticksstones22 42271 hbtlem7 43228 dgraaf 43250 deg1mhm 43303 elixpconstg 45196 elmapsnd 45311 unirnmap 45315 resincncf 45983 dvnprodlem1 46054 volioof 46095 voliooicof 46104 qndenserrnbllem 46402 subsaliuncllem 46465 fge0iccico 46478 elhoi 46650 ovnsubaddlem1 46678 hoiqssbllem3 46732 ovolval4lem1 46757 rrx2xpref1o 48829 oppff1 49259 fucofulem2 49422 |
| Copyright terms: Public domain | W3C validator |