![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6714 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | ffvelcdm 7080 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3146 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 512 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | simpl 483 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | fvelrnb 6949 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
7 | 6 | biimpd 228 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
8 | nfra1 3281 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
9 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
10 | rsp 3244 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
11 | eleq1 2821 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
12 | 11 | biimpcd 248 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
14 | 8, 9, 13 | rexlimd 3263 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
15 | 7, 14 | sylan9 508 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
16 | 15 | ssrdv 3987 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
17 | df-f 6544 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
18 | 5, 16, 17 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
19 | 4, 18 | impbii 208 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⊆ wss 3947 ran crn 5676 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 |
This theorem is referenced by: ffnfvf 7115 fnfvrnss 7116 fcdmssb 7117 fmpt2d 7119 fconstfv 7210 ffnov 7531 seqomlem2 8447 naddf 8676 elixpconst 8895 elixpsn 8927 unblem4 9294 ordtypelem4 9512 oismo 9531 cantnfvalf 9656 rankf 9785 alephon 10060 alephf1 10076 alephf1ALT 10094 alephfplem4 10098 cfsmolem 10261 infpssrlem3 10296 axcc4 10430 domtriomlem 10433 pwfseqlem3 10651 gch3 10667 inar1 10766 peano5nni 12211 cnref1o 12965 seqf2 13983 hashkf 14288 iswrdsymb 14477 ccatrn 14535 shftf 15022 sqrtf 15306 isercoll2 15611 eff2 16038 reeff1 16059 1arith 16856 ramcl 16958 xpscf 17507 dmaf 17995 cdaf 17996 coapm 18017 odf 19399 gsumpt 19824 dprdff 19876 dprdfcntz 19879 dprdfadd 19884 dprdlub 19890 mgpf 20064 prdscrngd 20128 isabvd 20420 psgnghm 21124 frlmsslsp 21342 psrbagcon 21474 psrbagconOLD 21475 mvrf2 21543 subrgmvrf 21580 mplbas2 21588 kqf 23242 fmf 23440 tmdgsum2 23591 prdstmdd 23619 prdstgpd 23620 prdsxmslem2 24029 metdsre 24360 evth 24466 evthicc2 24968 ovolfsf 24979 ovolf 24990 vitalilem2 25117 vitalilem5 25120 0plef 25180 mbfi1fseqlem4 25227 xrge0f 25240 itg2addlem 25267 dvfre 25459 dvne0 25519 mdegxrf 25577 mtest 25907 psercn 25929 recosf1o 26035 logcn 26146 amgm 26484 emcllem7 26495 dchrfi 26747 dchr1re 26755 dchrisum0re 27005 padicabvf 27123 addsf 27455 negsf 27515 vtxdgfisf 28722 hlimf 30477 pjrni 30942 pjmf1 30956 2ndresdju 31861 nsgmgc 32511 reprinfz1 33622 reprdifc 33627 bnj149 33874 subfacp1lem3 34161 mrsubrn 34492 msrf 34521 mclsind 34549 neibastop2lem 35233 rrncmslem 36688 cdlemk56 39830 sticksstones22 40972 hbtlem7 41852 dgraaf 41874 deg1mhm 41934 elixpconstg 43763 elmapsnd 43888 unirnmap 43892 resincncf 44577 dvnprodlem1 44648 volioof 44689 voliooicof 44698 qndenserrnbllem 44996 subsaliuncllem 45059 fge0iccico 45072 elhoi 45244 ovnsubaddlem1 45272 hoiqssbllem3 45326 ovolval4lem1 45351 rngmgpf 46639 rrx2xpref1o 47357 |
Copyright terms: Public domain | W3C validator |