Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6645 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | ffvelcdm 7009 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3139 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 512 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | simpl 483 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | fvelrnb 6880 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
7 | 6 | biimpd 228 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
8 | nfra1 3263 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
9 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
10 | rsp 3226 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
11 | eleq1 2824 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
12 | 11 | biimpcd 248 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
14 | 8, 9, 13 | rexlimd 3245 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
15 | 7, 14 | sylan9 508 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
16 | 15 | ssrdv 3937 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
17 | df-f 6477 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
18 | 5, 16, 17 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
19 | 4, 18 | impbii 208 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 ⊆ wss 3897 ran crn 5615 Fn wfn 6468 ⟶wf 6469 ‘cfv 6473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-fv 6481 |
This theorem is referenced by: ffnfvf 7043 fnfvrnss 7044 fcdmssb 7045 fmpt2d 7047 fconstfv 7138 ffnov 7455 seqomlem2 8344 elixpconst 8756 elixpsn 8788 unblem4 9155 ordtypelem4 9370 oismo 9389 cantnfvalf 9514 rankf 9643 alephon 9918 alephf1 9934 alephf1ALT 9952 alephfplem4 9956 cfsmolem 10119 infpssrlem3 10154 axcc4 10288 domtriomlem 10291 pwfseqlem3 10509 gch3 10525 inar1 10624 peano5nni 12069 cnref1o 12818 seqf2 13835 hashkf 14139 iswrdsymb 14326 ccatrn 14385 shftf 14881 sqrtf 15166 isercoll2 15471 eff2 15899 reeff1 15920 1arith 16717 ramcl 16819 xpscf 17365 dmaf 17853 cdaf 17854 coapm 17875 odf 19233 gsumpt 19650 dprdff 19702 dprdfcntz 19705 dprdfadd 19710 dprdlub 19716 mgpf 19885 prdscrngd 19939 isabvd 20178 psgnghm 20883 frlmsslsp 21101 psrbagcon 21231 psrbagconOLD 21232 subrgmvrf 21333 mplbas2 21341 mvrf2 21366 kqf 22996 fmf 23194 tmdgsum2 23345 prdstmdd 23373 prdstgpd 23374 prdsxmslem2 23783 metdsre 24114 evth 24220 evthicc2 24722 ovolfsf 24733 ovolf 24744 vitalilem2 24871 vitalilem5 24874 0plef 24934 mbfi1fseqlem4 24981 xrge0f 24994 itg2addlem 25021 dvfre 25213 dvne0 25273 mdegxrf 25331 mtest 25661 psercn 25683 recosf1o 25789 logcn 25900 amgm 26238 emcllem7 26249 dchrfi 26501 dchr1re 26509 dchrisum0re 26759 padicabvf 26877 vtxdgfisf 28073 hlimf 29828 pjrni 30293 pjmf1 30307 2ndresdju 31214 nsgmgc 31835 reprinfz1 32843 reprdifc 32848 bnj149 33095 subfacp1lem3 33384 mrsubrn 33715 msrf 33744 mclsind 33772 neibastop2lem 34640 rrncmslem 36088 cdlemk56 39232 sticksstones22 40374 hbtlem7 41201 dgraaf 41223 deg1mhm 41283 elixpconstg 42948 elmapsnd 43060 unirnmap 43064 resincncf 43741 dvnprodlem1 43812 volioof 43853 voliooicof 43862 qndenserrnbllem 44160 subsaliuncllem 44221 fge0iccico 44234 elhoi 44406 ovnsubaddlem1 44434 hoiqssbllem3 44488 ovolval4lem1 44513 rrx2xpref1o 46404 |
Copyright terms: Public domain | W3C validator |