![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6747 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | ffvelcdm 7115 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3152 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 511 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | simpl 482 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | fvelrnb 6982 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
7 | 6 | biimpd 229 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
8 | nfra1 3290 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
9 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
10 | rsp 3253 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
11 | eleq1 2832 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
12 | 11 | biimpcd 249 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
14 | 8, 9, 13 | rexlimd 3272 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
15 | 7, 14 | sylan9 507 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
16 | 15 | ssrdv 4014 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
17 | df-f 6577 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
18 | 5, 16, 17 | sylanbrc 582 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
19 | 4, 18 | impbii 209 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: ffnfvf 7154 fnfvrnss 7155 fcdmssb 7156 fmpt2d 7158 fssrescdmd 7160 fconstfv 7249 ffnov 7576 seqomlem2 8507 naddf 8737 elixpconst 8963 elixpsn 8995 unblem4 9359 ordtypelem4 9590 oismo 9609 cantnfvalf 9734 rankf 9863 alephon 10138 alephf1 10154 alephf1ALT 10172 alephfplem4 10176 cfsmolem 10339 infpssrlem3 10374 axcc4 10508 domtriomlem 10511 pwfseqlem3 10729 gch3 10745 inar1 10844 peano5nni 12296 cnref1o 13050 seqf2 14072 hashkf 14381 iswrdsymb 14579 ccatrn 14637 shftf 15128 sqrtf 15412 isercoll2 15717 eff2 16147 reeff1 16168 1arith 16974 ramcl 17076 xpscf 17625 dmaf 18116 cdaf 18117 coapm 18138 odf 19579 gsumpt 20004 dprdff 20056 dprdfcntz 20059 dprdfadd 20064 dprdlub 20070 rngmgpf 20184 mgpf 20275 prdscrngd 20345 isabvd 20835 psgnghm 21621 frlmsslsp 21839 psrbagcon 21968 mvrf2 22036 subrgmvrf 22075 mplbas2 22083 kqf 23776 fmf 23974 tmdgsum2 24125 prdstmdd 24153 prdstgpd 24154 prdsxmslem2 24563 metdsre 24894 evth 25010 evthicc2 25514 ovolfsf 25525 ovolf 25536 vitalilem2 25663 vitalilem5 25666 0plef 25726 mbfi1fseqlem4 25773 xrge0f 25786 itg2addlem 25813 dvfre 26009 dvne0 26070 mdegxrf 26127 mtest 26465 psercn 26488 recosf1o 26595 logcn 26707 amgm 27052 emcllem7 27063 dchrfi 27317 dchr1re 27325 dchrisum0re 27575 padicabvf 27693 addsf 28033 negsf 28102 noseqind 28316 vtxdgfisf 29512 hlimf 31269 pjrni 31734 pjmf1 31748 2ndresdju 32667 nsgmgc 33405 reprinfz1 34599 reprdifc 34604 bnj149 34851 subfacp1lem3 35150 mrsubrn 35481 msrf 35510 mclsind 35538 neibastop2lem 36326 weiunlem2 36429 rrncmslem 37792 cdlemk56 40928 sticksstones22 42125 hbtlem7 43082 dgraaf 43104 deg1mhm 43161 elixpconstg 44991 elmapsnd 45111 unirnmap 45115 resincncf 45796 dvnprodlem1 45867 volioof 45908 voliooicof 45917 qndenserrnbllem 46215 subsaliuncllem 46278 fge0iccico 46291 elhoi 46463 ovnsubaddlem1 46491 hoiqssbllem3 46545 ovolval4lem1 46570 rrx2xpref1o 48452 |
Copyright terms: Public domain | W3C validator |