Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ffnfv | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
ffnfv | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6600 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | ffvelrn 6959 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
3 | 2 | ralrimiva 3103 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
4 | 1, 3 | jca 512 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | simpl 483 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴) | |
6 | fvelrnb 6830 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) | |
7 | 6 | biimpd 228 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
8 | nfra1 3144 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 | |
9 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
10 | rsp 3131 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝐵)) | |
11 | eleq1 2826 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
12 | 11 | biimpcd 248 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ∈ 𝐵 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
13 | 10, 12 | syl6 35 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
14 | 8, 9, 13 | rexlimd 3250 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
15 | 7, 14 | sylan9 508 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐵)) |
16 | 15 | ssrdv 3927 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → ran 𝐹 ⊆ 𝐵) |
17 | df-f 6437 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
18 | 5, 16, 17 | sylanbrc 583 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
19 | 4, 18 | impbii 208 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ran crn 5590 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: ffnfvf 6993 fnfvrnss 6994 frnssb 6995 fmpt2d 6997 fconstfv 7088 ffnov 7401 seqomlem2 8282 elixpconst 8693 elixpsn 8725 unblem4 9069 ordtypelem4 9280 oismo 9299 cantnfvalf 9423 rankf 9552 alephon 9825 alephf1 9841 alephf1ALT 9859 alephfplem4 9863 cfsmolem 10026 infpssrlem3 10061 axcc4 10195 domtriomlem 10198 pwfseqlem3 10416 gch3 10432 inar1 10531 peano5nni 11976 cnref1o 12725 seqf2 13742 hashkf 14046 iswrdsymb 14234 ccatrn 14294 shftf 14790 sqrtf 15075 isercoll2 15380 eff2 15808 reeff1 15829 1arith 16628 ramcl 16730 xpscf 17276 dmaf 17764 cdaf 17765 coapm 17786 odf 19145 gsumpt 19563 dprdff 19615 dprdfcntz 19618 dprdfadd 19623 dprdlub 19629 mgpf 19798 prdscrngd 19852 isabvd 20080 psgnghm 20785 frlmsslsp 21003 psrbagcon 21133 psrbagconOLD 21134 subrgmvrf 21235 mplbas2 21243 mvrf2 21268 kqf 22898 fmf 23096 tmdgsum2 23247 prdstmdd 23275 prdstgpd 23276 prdsxmslem2 23685 metdsre 24016 evth 24122 evthicc2 24624 ovolfsf 24635 ovolf 24646 vitalilem2 24773 vitalilem5 24776 0plef 24836 mbfi1fseqlem4 24883 xrge0f 24896 itg2addlem 24923 dvfre 25115 dvne0 25175 mdegxrf 25233 mtest 25563 psercn 25585 recosf1o 25691 logcn 25802 amgm 26140 emcllem7 26151 dchrfi 26403 dchr1re 26411 dchrisum0re 26661 padicabvf 26779 vtxdgfisf 27843 hlimf 29599 pjrni 30064 pjmf1 30078 2ndresdju 30986 nsgmgc 31597 reprinfz1 32602 reprdifc 32607 bnj149 32855 subfacp1lem3 33144 mrsubrn 33475 msrf 33504 mclsind 33532 neibastop2lem 34549 rrncmslem 35990 cdlemk56 38985 sticksstones22 40124 hbtlem7 40950 dgraaf 40972 deg1mhm 41032 elixpconstg 42639 elmapsnd 42744 unirnmap 42748 resincncf 43416 dvnprodlem1 43487 volioof 43528 voliooicof 43537 qndenserrnbllem 43835 subsaliuncllem 43896 fge0iccico 43908 elhoi 44080 ovnsubaddlem1 44108 hoiqssbllem3 44162 ovolval4lem1 44187 rrx2xpref1o 46064 |
Copyright terms: Public domain | W3C validator |