Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpconstg | Structured version Visualization version GIF version |
Description: Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
ixpconstg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3413 | . . . . 5 ⊢ 𝑓 ∈ V | |
2 | 1 | elixpconst 8500 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝑓:𝐴⟶𝐵) |
3 | 2 | abbi2i 2891 | . . 3 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
4 | mapvalg 8432 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ↑m 𝐴) = {𝑓 ∣ 𝑓:𝐴⟶𝐵}) | |
5 | 3, 4 | eqtr4id 2812 | . 2 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) |
6 | 5 | ancoms 462 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ⟶wf 6336 (class class class)co 7156 ↑m cmap 8422 Xcixp 8492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-map 8424 df-ixp 8493 |
This theorem is referenced by: ixpconst 8502 mapsnf1o 8534 prdshom 16812 pwsbas 16832 frlmip 20557 pttoponconst 22311 xkoptsub 22368 xkopt 22369 tmdgsum2 22810 rrxip 24104 ovnlecvr2 43660 naryfvalixp 45467 |
Copyright terms: Public domain | W3C validator |