MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpconstg Structured version   Visualization version   GIF version

Theorem ixpconstg 8900
Description: Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.)
Assertion
Ref Expression
ixpconstg ((𝐴𝑉𝐵𝑊) → X𝑥𝐴 𝐵 = (𝐵m 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpconstg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 vex 3479 . . . . 5 𝑓 ∈ V
21elixpconst 8899 . . . 4 (𝑓X𝑥𝐴 𝐵𝑓:𝐴𝐵)
32eqabi 2870 . . 3 X𝑥𝐴 𝐵 = {𝑓𝑓:𝐴𝐵}
4 mapvalg 8830 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵m 𝐴) = {𝑓𝑓:𝐴𝐵})
53, 4eqtr4id 2792 . 2 ((𝐵𝑊𝐴𝑉) → X𝑥𝐴 𝐵 = (𝐵m 𝐴))
65ancoms 460 1 ((𝐴𝑉𝐵𝑊) → X𝑥𝐴 𝐵 = (𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  wf 6540  (class class class)co 7409  m cmap 8820  Xcixp 8891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-ixp 8892
This theorem is referenced by:  ixpconst  8901  mapsnf1o  8933  prdshom  17413  pwsbas  17433  frlmip  21333  pttoponconst  23101  xkoptsub  23158  xkopt  23159  tmdgsum2  23600  rrxip  24907  ovnlecvr2  45326  naryfvalixp  47315
  Copyright terms: Public domain W3C validator