MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpconstg Structured version   Visualization version   GIF version

Theorem ixpconstg 8879
Description: Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.)
Assertion
Ref Expression
ixpconstg ((𝐴𝑉𝐵𝑊) → X𝑥𝐴 𝐵 = (𝐵m 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpconstg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . 5 𝑓 ∈ V
21elixpconst 8878 . . . 4 (𝑓X𝑥𝐴 𝐵𝑓:𝐴𝐵)
32eqabi 2863 . . 3 X𝑥𝐴 𝐵 = {𝑓𝑓:𝐴𝐵}
4 mapvalg 8809 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵m 𝐴) = {𝑓𝑓:𝐴𝐵})
53, 4eqtr4id 2783 . 2 ((𝐵𝑊𝐴𝑉) → X𝑥𝐴 𝐵 = (𝐵m 𝐴))
65ancoms 458 1 ((𝐴𝑉𝐵𝑊) → X𝑥𝐴 𝐵 = (𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wf 6507  (class class class)co 7387  m cmap 8799  Xcixp 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ixp 8871
This theorem is referenced by:  ixpconst  8880  mapsnf1o  8912  prdshom  17430  pwsbas  17450  frlmip  21687  pttoponconst  23484  xkoptsub  23541  xkopt  23542  tmdgsum2  23983  rrxip  25290  ovnlecvr2  46608  naryfvalixp  48618
  Copyright terms: Public domain W3C validator