| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpconstg | Structured version Visualization version GIF version | ||
| Description: Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| ixpconstg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . 5 ⊢ 𝑓 ∈ V | |
| 2 | 1 | elixpconst 8824 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝑓:𝐴⟶𝐵) |
| 3 | 2 | eqabi 2866 | . . 3 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
| 4 | mapvalg 8755 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ↑m 𝐴) = {𝑓 ∣ 𝑓:𝐴⟶𝐵}) | |
| 5 | 3, 4 | eqtr4id 2785 | . 2 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) |
| 6 | 5 | ancoms 458 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ⟶wf 6472 (class class class)co 7341 ↑m cmap 8745 Xcixp 8816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-ixp 8817 |
| This theorem is referenced by: ixpconst 8826 mapsnf1o 8858 prdshom 17366 pwsbas 17386 frlmip 21710 pttoponconst 23507 xkoptsub 23564 xkopt 23565 tmdgsum2 24006 rrxip 25312 ovnlecvr2 46648 naryfvalixp 48661 |
| Copyright terms: Public domain | W3C validator |