| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpconstg | Structured version Visualization version GIF version | ||
| Description: Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| ixpconstg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . 5 ⊢ 𝑓 ∈ V | |
| 2 | 1 | elixpconst 8924 | . . . 4 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝑓:𝐴⟶𝐵) |
| 3 | 2 | eqabi 2871 | . . 3 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
| 4 | mapvalg 8855 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 ↑m 𝐴) = {𝑓 ∣ 𝑓:𝐴⟶𝐵}) | |
| 5 | 3, 4 | eqtr4id 2790 | . 2 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) |
| 6 | 5 | ancoms 458 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → X𝑥 ∈ 𝐴 𝐵 = (𝐵 ↑m 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ⟶wf 6532 (class class class)co 7410 ↑m cmap 8845 Xcixp 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-ixp 8917 |
| This theorem is referenced by: ixpconst 8926 mapsnf1o 8958 prdshom 17486 pwsbas 17506 frlmip 21743 pttoponconst 23540 xkoptsub 23597 xkopt 23598 tmdgsum2 24039 rrxip 25347 ovnlecvr2 46606 naryfvalixp 48576 |
| Copyright terms: Public domain | W3C validator |