MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmptrab2 Structured version   Visualization version   GIF version

Theorem elmptrab2 22433
Description: Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
elmptrab2.f 𝐹 = (𝑥 ∈ V ↦ {𝑦𝐵𝜑})
elmptrab2.s1 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
elmptrab2.s2 (𝑥 = 𝑋𝐵 = 𝐶)
elmptrab2.ex 𝐵 ∈ V
elmptrab2.rc (𝑌𝐶𝑋𝑊)
Assertion
Ref Expression
elmptrab2 (𝑌 ∈ (𝐹𝑋) ↔ (𝑌𝐶𝜓))
Distinct variable groups:   𝑥,𝑦,𝜓   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐶,𝑦   𝑥,𝑊,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem elmptrab2
StepHypRef Expression
1 elmptrab2.f . . 3 𝐹 = (𝑥 ∈ V ↦ {𝑦𝐵𝜑})
2 elmptrab2.s1 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
3 elmptrab2.s2 . . 3 (𝑥 = 𝑋𝐵 = 𝐶)
4 elmptrab2.ex . . . 4 𝐵 ∈ V
54a1i 11 . . 3 (𝑥 ∈ V → 𝐵 ∈ V)
61, 2, 3, 5elmptrab 22432 . 2 (𝑌 ∈ (𝐹𝑋) ↔ (𝑋 ∈ V ∧ 𝑌𝐶𝜓))
7 3simpc 1147 . . 3 ((𝑋 ∈ V ∧ 𝑌𝐶𝜓) → (𝑌𝐶𝜓))
8 elmptrab2.rc . . . . . 6 (𝑌𝐶𝑋𝑊)
98elexd 3461 . . . . 5 (𝑌𝐶𝑋 ∈ V)
109adantr 484 . . . 4 ((𝑌𝐶𝜓) → 𝑋 ∈ V)
11 simpl 486 . . . 4 ((𝑌𝐶𝜓) → 𝑌𝐶)
12 simpr 488 . . . 4 ((𝑌𝐶𝜓) → 𝜓)
1310, 11, 123jca 1125 . . 3 ((𝑌𝐶𝜓) → (𝑋 ∈ V ∧ 𝑌𝐶𝜓))
147, 13impbii 212 . 2 ((𝑋 ∈ V ∧ 𝑌𝐶𝜓) ↔ (𝑌𝐶𝜓))
156, 14bitri 278 1 (𝑌 ∈ (𝐹𝑋) ↔ (𝑌𝐶𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cmpt 5110  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332
This theorem is referenced by:  isfil  22452  isufil  22508
  Copyright terms: Public domain W3C validator