![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmptrab2 | Structured version Visualization version GIF version |
Description: Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
elmptrab2.f | ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) |
elmptrab2.s1 | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
elmptrab2.s2 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
elmptrab2.ex | ⊢ 𝐵 ∈ V |
elmptrab2.rc | ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) |
Ref | Expression |
---|---|
elmptrab2 | ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmptrab2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) | |
2 | elmptrab2.s1 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
3 | elmptrab2.s2 | . . 3 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
4 | elmptrab2.ex | . . . 4 ⊢ 𝐵 ∈ V | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ V → 𝐵 ∈ V) |
6 | 1, 2, 3, 5 | elmptrab 23851 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |
7 | 3simpc 1149 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) → (𝑌 ∈ 𝐶 ∧ 𝜓)) | |
8 | elmptrab2.rc | . . . . . 6 ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) | |
9 | 8 | elexd 3502 | . . . . 5 ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ V) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑋 ∈ V) |
11 | simpl 482 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑌 ∈ 𝐶) | |
12 | simpr 484 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝜓) | |
13 | 10, 11, 12 | 3jca 1127 | . . 3 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → (𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |
14 | 7, 13 | impbii 209 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
15 | 6, 14 | bitri 275 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ↦ cmpt 5231 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: isfil 23871 isufil 23927 |
Copyright terms: Public domain | W3C validator |