Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elmptrab2 | Structured version Visualization version GIF version |
Description: Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
elmptrab2.f | ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) |
elmptrab2.s1 | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
elmptrab2.s2 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
elmptrab2.ex | ⊢ 𝐵 ∈ V |
elmptrab2.rc | ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) |
Ref | Expression |
---|---|
elmptrab2 | ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmptrab2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) | |
2 | elmptrab2.s1 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
3 | elmptrab2.s2 | . . 3 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
4 | elmptrab2.ex | . . . 4 ⊢ 𝐵 ∈ V | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ V → 𝐵 ∈ V) |
6 | 1, 2, 3, 5 | elmptrab 22922 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |
7 | 3simpc 1148 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) → (𝑌 ∈ 𝐶 ∧ 𝜓)) | |
8 | elmptrab2.rc | . . . . . 6 ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) | |
9 | 8 | elexd 3447 | . . . . 5 ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ V) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑋 ∈ V) |
11 | simpl 482 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑌 ∈ 𝐶) | |
12 | simpr 484 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝜓) | |
13 | 10, 11, 12 | 3jca 1126 | . . 3 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → (𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |
14 | 7, 13 | impbii 208 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
15 | 6, 14 | bitri 274 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2107 {crab 3066 Vcvv 3427 ↦ cmpt 5158 ‘cfv 6423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fv 6431 |
This theorem is referenced by: isfil 22942 isufil 22998 |
Copyright terms: Public domain | W3C validator |