| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmptrab2 | Structured version Visualization version GIF version | ||
| Description: Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| elmptrab2.f | ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| elmptrab2.s1 | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
| elmptrab2.s2 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
| elmptrab2.ex | ⊢ 𝐵 ∈ V |
| elmptrab2.rc | ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| elmptrab2 | ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmptrab2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) | |
| 2 | elmptrab2.s1 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
| 3 | elmptrab2.s2 | . . 3 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
| 4 | elmptrab2.ex | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ V → 𝐵 ∈ V) |
| 6 | 1, 2, 3, 5 | elmptrab 23752 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |
| 7 | 3simpc 1150 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) → (𝑌 ∈ 𝐶 ∧ 𝜓)) | |
| 8 | elmptrab2.rc | . . . . . 6 ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) | |
| 9 | 8 | elexd 3462 | . . . . 5 ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ V) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑋 ∈ V) |
| 11 | simpl 482 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑌 ∈ 𝐶) | |
| 12 | simpr 484 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝜓) | |
| 13 | 10, 11, 12 | 3jca 1128 | . . 3 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → (𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |
| 14 | 7, 13 | impbii 209 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
| 15 | 6, 14 | bitri 275 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {crab 3397 Vcvv 3438 ↦ cmpt 5176 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fv 6497 |
| This theorem is referenced by: isfil 23772 isufil 23828 |
| Copyright terms: Public domain | W3C validator |