| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmptrab2 | Structured version Visualization version GIF version | ||
| Description: Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| elmptrab2.f | ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) |
| elmptrab2.s1 | ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
| elmptrab2.s2 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
| elmptrab2.ex | ⊢ 𝐵 ∈ V |
| elmptrab2.rc | ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| elmptrab2 | ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmptrab2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) | |
| 2 | elmptrab2.s1 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) | |
| 3 | elmptrab2.s2 | . . 3 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
| 4 | elmptrab2.ex | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ V → 𝐵 ∈ V) |
| 6 | 1, 2, 3, 5 | elmptrab 23721 | . 2 ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |
| 7 | 3simpc 1150 | . . 3 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) → (𝑌 ∈ 𝐶 ∧ 𝜓)) | |
| 8 | elmptrab2.rc | . . . . . 6 ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ 𝑊) | |
| 9 | 8 | elexd 3474 | . . . . 5 ⊢ (𝑌 ∈ 𝐶 → 𝑋 ∈ V) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑋 ∈ V) |
| 11 | simpl 482 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑌 ∈ 𝐶) | |
| 12 | simpr 484 | . . . 4 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → 𝜓) | |
| 13 | 10, 11, 12 | 3jca 1128 | . . 3 ⊢ ((𝑌 ∈ 𝐶 ∧ 𝜓) → (𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |
| 14 | 7, 13 | impbii 209 | . 2 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
| 15 | 6, 14 | bitri 275 | 1 ⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: isfil 23741 isufil 23797 |
| Copyright terms: Public domain | W3C validator |