MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmptrab2 Structured version   Visualization version   GIF version

Theorem elmptrab2 23736
Description: Membership in a one-parameter class of sets, indexed by arbitrary base sets. (Contributed by Stefan O'Rear, 28-Jul-2015.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
elmptrab2.f 𝐹 = (𝑥 ∈ V ↦ {𝑦𝐵𝜑})
elmptrab2.s1 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
elmptrab2.s2 (𝑥 = 𝑋𝐵 = 𝐶)
elmptrab2.ex 𝐵 ∈ V
elmptrab2.rc (𝑌𝐶𝑋𝑊)
Assertion
Ref Expression
elmptrab2 (𝑌 ∈ (𝐹𝑋) ↔ (𝑌𝐶𝜓))
Distinct variable groups:   𝑥,𝑦,𝜓   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐶,𝑦   𝑥,𝑊,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem elmptrab2
StepHypRef Expression
1 elmptrab2.f . . 3 𝐹 = (𝑥 ∈ V ↦ {𝑦𝐵𝜑})
2 elmptrab2.s1 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
3 elmptrab2.s2 . . 3 (𝑥 = 𝑋𝐵 = 𝐶)
4 elmptrab2.ex . . . 4 𝐵 ∈ V
54a1i 11 . . 3 (𝑥 ∈ V → 𝐵 ∈ V)
61, 2, 3, 5elmptrab 23735 . 2 (𝑌 ∈ (𝐹𝑋) ↔ (𝑋 ∈ V ∧ 𝑌𝐶𝜓))
7 3simpc 1150 . . 3 ((𝑋 ∈ V ∧ 𝑌𝐶𝜓) → (𝑌𝐶𝜓))
8 elmptrab2.rc . . . . . 6 (𝑌𝐶𝑋𝑊)
98elexd 3458 . . . . 5 (𝑌𝐶𝑋 ∈ V)
109adantr 480 . . . 4 ((𝑌𝐶𝜓) → 𝑋 ∈ V)
11 simpl 482 . . . 4 ((𝑌𝐶𝜓) → 𝑌𝐶)
12 simpr 484 . . . 4 ((𝑌𝐶𝜓) → 𝜓)
1310, 11, 123jca 1128 . . 3 ((𝑌𝐶𝜓) → (𝑋 ∈ V ∧ 𝑌𝐶𝜓))
147, 13impbii 209 . 2 ((𝑋 ∈ V ∧ 𝑌𝐶𝜓) ↔ (𝑌𝐶𝜓))
156, 14bitri 275 1 (𝑌 ∈ (𝐹𝑋) ↔ (𝑌𝐶𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  {crab 3393  Vcvv 3434  cmpt 5170  cfv 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fv 6485
This theorem is referenced by:  isfil  23755  isufil  23811
  Copyright terms: Public domain W3C validator