![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnrexdm | Structured version Visualization version GIF version |
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
Ref | Expression |
---|---|
elrnrexdm | ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2727 | . . . . . 6 ⊢ (𝑌 ∈ ran 𝐹 → 𝑌 = 𝑌) | |
2 | 1 | ancli 548 | . . . . 5 ⊢ (𝑌 ∈ ran 𝐹 → (𝑌 ∈ ran 𝐹 ∧ 𝑌 = 𝑌)) |
3 | 2 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ ran 𝐹) → (𝑌 ∈ ran 𝐹 ∧ 𝑌 = 𝑌)) |
4 | eqeq2 2738 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑌 = 𝑦 ↔ 𝑌 = 𝑌)) | |
5 | 4 | rspcev 3606 | . . . 4 ⊢ ((𝑌 ∈ ran 𝐹 ∧ 𝑌 = 𝑌) → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦) |
6 | 3, 5 | syl 17 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ ran 𝐹) → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦) |
7 | 6 | ex 412 | . 2 ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦)) |
8 | funfn 6572 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
9 | eqeq2 2738 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑌 = 𝑦 ↔ 𝑌 = (𝐹‘𝑥))) | |
10 | 9 | rexrn 7082 | . . 3 ⊢ (𝐹 Fn dom 𝐹 → (∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
11 | 8, 10 | sylbi 216 | . 2 ⊢ (Fun 𝐹 → (∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
12 | 7, 11 | sylibd 238 | 1 ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 dom cdm 5669 ran crn 5670 Fun wfun 6531 Fn wfn 6532 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fn 6540 df-fv 6545 |
This theorem is referenced by: toprntopon 22782 wlkiswwlksupgr2 29640 loop1cycl 34656 bj-ccinftydisj 36601 gneispace 43466 |
Copyright terms: Public domain | W3C validator |