MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnrexdm Structured version   Visualization version   GIF version

Theorem elrnrexdm 7064
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
elrnrexdm (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌

Proof of Theorem elrnrexdm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . . . . . 6 (𝑌 ∈ ran 𝐹𝑌 = 𝑌)
21ancli 548 . . . . 5 (𝑌 ∈ ran 𝐹 → (𝑌 ∈ ran 𝐹𝑌 = 𝑌))
32adantl 481 . . . 4 ((Fun 𝐹𝑌 ∈ ran 𝐹) → (𝑌 ∈ ran 𝐹𝑌 = 𝑌))
4 eqeq2 2742 . . . . 5 (𝑦 = 𝑌 → (𝑌 = 𝑦𝑌 = 𝑌))
54rspcev 3591 . . . 4 ((𝑌 ∈ ran 𝐹𝑌 = 𝑌) → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦)
63, 5syl 17 . . 3 ((Fun 𝐹𝑌 ∈ ran 𝐹) → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦)
76ex 412 . 2 (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦))
8 funfn 6549 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
9 eqeq2 2742 . . . 4 (𝑦 = (𝐹𝑥) → (𝑌 = 𝑦𝑌 = (𝐹𝑥)))
109rexrn 7062 . . 3 (𝐹 Fn dom 𝐹 → (∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
118, 10sylbi 217 . 2 (Fun 𝐹 → (∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
127, 11sylibd 239 1 (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  dom cdm 5641  ran crn 5642  Fun wfun 6508   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  toprntopon  22819  wlkiswwlksupgr2  29814  loop1cycl  35131  bj-ccinftydisj  37208  gneispace  44130
  Copyright terms: Public domain W3C validator