![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnrexdm | Structured version Visualization version GIF version |
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017.) |
Ref | Expression |
---|---|
elrnrexdm | ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2737 | . . . . . 6 ⊢ (𝑌 ∈ ran 𝐹 → 𝑌 = 𝑌) | |
2 | 1 | ancli 549 | . . . . 5 ⊢ (𝑌 ∈ ran 𝐹 → (𝑌 ∈ ran 𝐹 ∧ 𝑌 = 𝑌)) |
3 | 2 | adantl 482 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ ran 𝐹) → (𝑌 ∈ ran 𝐹 ∧ 𝑌 = 𝑌)) |
4 | eqeq2 2748 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑌 = 𝑦 ↔ 𝑌 = 𝑌)) | |
5 | 4 | rspcev 3581 | . . . 4 ⊢ ((𝑌 ∈ ran 𝐹 ∧ 𝑌 = 𝑌) → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦) |
6 | 3, 5 | syl 17 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑌 ∈ ran 𝐹) → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦) |
7 | 6 | ex 413 | . 2 ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦)) |
8 | funfn 6531 | . . 3 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
9 | eqeq2 2748 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑌 = 𝑦 ↔ 𝑌 = (𝐹‘𝑥))) | |
10 | 9 | rexrn 7037 | . . 3 ⊢ (𝐹 Fn dom 𝐹 → (∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
11 | 8, 10 | sylbi 216 | . 2 ⊢ (Fun 𝐹 → (∃𝑦 ∈ ran 𝐹 𝑌 = 𝑦 ↔ ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
12 | 7, 11 | sylibd 238 | 1 ⊢ (Fun 𝐹 → (𝑌 ∈ ran 𝐹 → ∃𝑥 ∈ dom 𝐹 𝑌 = (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3073 dom cdm 5633 ran crn 5634 Fun wfun 6490 Fn wfn 6491 ‘cfv 6496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pr 5384 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-iota 6448 df-fun 6498 df-fn 6499 df-fv 6504 |
This theorem is referenced by: toprntopon 22274 wlkiswwlksupgr2 28822 loop1cycl 33731 bj-ccinftydisj 35684 gneispace 42396 |
Copyright terms: Public domain | W3C validator |