| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edgiedgb | Structured version Visualization version GIF version | ||
| Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| edgiedgb | ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 28976 | . . . 4 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | edgiedgb.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 2 | eqcomi 2738 | . . . . 5 ⊢ (iEdg‘𝐺) = 𝐼 |
| 4 | 3 | rneqi 5901 | . . . 4 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 5 | 1, 4 | eqtri 2752 | . . 3 ⊢ (Edg‘𝐺) = ran 𝐼 |
| 6 | 5 | eleq2i 2820 | . 2 ⊢ (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran 𝐼) |
| 7 | elrnrexdmb 7062 | . 2 ⊢ (Fun 𝐼 → (𝐸 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | |
| 8 | 6, 7 | bitrid 283 | 1 ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 dom cdm 5638 ran crn 5639 Fun wfun 6505 ‘cfv 6511 iEdgciedg 28924 Edgcedg 28974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 df-edg 28975 |
| This theorem is referenced by: uhgredgiedgb 29053 isubgredg 47863 uhgrimedgi 47887 |
| Copyright terms: Public domain | W3C validator |