MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgiedgb Structured version   Visualization version   GIF version

Theorem edgiedgb 28895
Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.)
Hypothesis
Ref Expression
edgiedgb.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
edgiedgb (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem edgiedgb
StepHypRef Expression
1 edgval 28890 . . . 4 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 edgiedgb.i . . . . . 6 𝐼 = (iEdg‘𝐺)
32eqcomi 2737 . . . . 5 (iEdg‘𝐺) = 𝐼
43rneqi 5943 . . . 4 ran (iEdg‘𝐺) = ran 𝐼
51, 4eqtri 2756 . . 3 (Edg‘𝐺) = ran 𝐼
65eleq2i 2821 . 2 (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran 𝐼)
7 elrnrexdmb 7105 . 2 (Fun 𝐼 → (𝐸 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
86, 7bitrid 282 1 (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wrex 3067  dom cdm 5682  ran crn 5683  Fun wfun 6547  cfv 6553  iEdgciedg 28838  Edgcedg 28888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561  df-edg 28889
This theorem is referenced by:  uhgredgiedgb  28967
  Copyright terms: Public domain W3C validator