MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgiedgb Structured version   Visualization version   GIF version

Theorem edgiedgb 28981
Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.)
Hypothesis
Ref Expression
edgiedgb.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
edgiedgb (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem edgiedgb
StepHypRef Expression
1 edgval 28976 . . . 4 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 edgiedgb.i . . . . . 6 𝐼 = (iEdg‘𝐺)
32eqcomi 2738 . . . . 5 (iEdg‘𝐺) = 𝐼
43rneqi 5901 . . . 4 ran (iEdg‘𝐺) = ran 𝐼
51, 4eqtri 2752 . . 3 (Edg‘𝐺) = ran 𝐼
65eleq2i 2820 . 2 (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran 𝐼)
7 elrnrexdmb 7062 . 2 (Fun 𝐼 → (𝐸 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
86, 7bitrid 283 1 (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  dom cdm 5638  ran crn 5639  Fun wfun 6505  cfv 6511  iEdgciedg 28924  Edgcedg 28974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-edg 28975
This theorem is referenced by:  uhgredgiedgb  29053  isubgredg  47863  uhgrimedgi  47887
  Copyright terms: Public domain W3C validator