| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edgiedgb | Structured version Visualization version GIF version | ||
| Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| edgiedgb | ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 28994 | . . . 4 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | edgiedgb.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 2 | eqcomi 2738 | . . . . 5 ⊢ (iEdg‘𝐺) = 𝐼 |
| 4 | 3 | rneqi 5879 | . . . 4 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 5 | 1, 4 | eqtri 2752 | . . 3 ⊢ (Edg‘𝐺) = ran 𝐼 |
| 6 | 5 | eleq2i 2820 | . 2 ⊢ (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran 𝐼) |
| 7 | elrnrexdmb 7024 | . 2 ⊢ (Fun 𝐼 → (𝐸 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | |
| 8 | 6, 7 | bitrid 283 | 1 ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 dom cdm 5619 ran crn 5620 Fun wfun 6476 ‘cfv 6482 iEdgciedg 28942 Edgcedg 28992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 df-edg 28993 |
| This theorem is referenced by: uhgredgiedgb 29071 isubgredg 47860 uhgrimedgi 47884 |
| Copyright terms: Public domain | W3C validator |