![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgiedgb | Structured version Visualization version GIF version |
Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
edgiedgb | ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 28982 | . . . 4 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | edgiedgb.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 2 | eqcomi 2735 | . . . . 5 ⊢ (iEdg‘𝐺) = 𝐼 |
4 | 3 | rneqi 5935 | . . . 4 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
5 | 1, 4 | eqtri 2754 | . . 3 ⊢ (Edg‘𝐺) = ran 𝐼 |
6 | 5 | eleq2i 2818 | . 2 ⊢ (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran 𝐼) |
7 | elrnrexdmb 7096 | . 2 ⊢ (Fun 𝐼 → (𝐸 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | |
8 | 6, 7 | bitrid 282 | 1 ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 dom cdm 5674 ran crn 5675 Fun wfun 6540 ‘cfv 6546 iEdgciedg 28930 Edgcedg 28980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-iota 6498 df-fun 6548 df-fn 6549 df-fv 6554 df-edg 28981 |
This theorem is referenced by: uhgredgiedgb 29059 |
Copyright terms: Public domain | W3C validator |