|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > edgiedgb | Structured version Visualization version GIF version | ||
| Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| edgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) | 
| Ref | Expression | 
|---|---|
| edgiedgb | ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | edgval 29067 | . . . 4 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | edgiedgb.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 2 | eqcomi 2745 | . . . . 5 ⊢ (iEdg‘𝐺) = 𝐼 | 
| 4 | 3 | rneqi 5947 | . . . 4 ⊢ ran (iEdg‘𝐺) = ran 𝐼 | 
| 5 | 1, 4 | eqtri 2764 | . . 3 ⊢ (Edg‘𝐺) = ran 𝐼 | 
| 6 | 5 | eleq2i 2832 | . 2 ⊢ (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran 𝐼) | 
| 7 | elrnrexdmb 7109 | . 2 ⊢ (Fun 𝐼 → (𝐸 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | |
| 8 | 6, 7 | bitrid 283 | 1 ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 dom cdm 5684 ran crn 5685 Fun wfun 6554 ‘cfv 6560 iEdgciedg 29015 Edgcedg 29065 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-fv 6568 df-edg 29066 | 
| This theorem is referenced by: uhgredgiedgb 29144 isubgredg 47857 | 
| Copyright terms: Public domain | W3C validator |