MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgiedgb Structured version   Visualization version   GIF version

Theorem edgiedgb 28314
Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.)
Hypothesis
Ref Expression
edgiedgb.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
edgiedgb (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem edgiedgb
StepHypRef Expression
1 edgval 28309 . . . 4 (Edg‘𝐺) = ran (iEdg‘𝐺)
2 edgiedgb.i . . . . . 6 𝐼 = (iEdg‘𝐺)
32eqcomi 2742 . . . . 5 (iEdg‘𝐺) = 𝐼
43rneqi 5937 . . . 4 ran (iEdg‘𝐺) = ran 𝐼
51, 4eqtri 2761 . . 3 (Edg‘𝐺) = ran 𝐼
65eleq2i 2826 . 2 (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran 𝐼)
7 elrnrexdmb 7092 . 2 (Fun 𝐼 → (𝐸 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
86, 7bitrid 283 1 (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  wrex 3071  dom cdm 5677  ran crn 5678  Fun wfun 6538  cfv 6544  iEdgciedg 28257  Edgcedg 28307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-edg 28308
This theorem is referenced by:  uhgredgiedgb  28386
  Copyright terms: Public domain W3C validator