Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > edgiedgb | Structured version Visualization version GIF version |
Description: A set is an edge iff it is an indexed edge. (Contributed by AV, 17-Oct-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edgiedgb.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
edgiedgb | ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 27322 | . . . 4 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | edgiedgb.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 2 | eqcomi 2747 | . . . . 5 ⊢ (iEdg‘𝐺) = 𝐼 |
4 | 3 | rneqi 5835 | . . . 4 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
5 | 1, 4 | eqtri 2766 | . . 3 ⊢ (Edg‘𝐺) = ran 𝐼 |
6 | 5 | eleq2i 2830 | . 2 ⊢ (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran 𝐼) |
7 | elrnrexdmb 6948 | . 2 ⊢ (Fun 𝐼 → (𝐸 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) | |
8 | 6, 7 | syl5bb 282 | 1 ⊢ (Fun 𝐼 → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ dom 𝐼 𝐸 = (𝐼‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 dom cdm 5580 ran crn 5581 Fun wfun 6412 ‘cfv 6418 iEdgciedg 27270 Edgcedg 27320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-edg 27321 |
This theorem is referenced by: uhgredgiedgb 27399 |
Copyright terms: Public domain | W3C validator |