MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspansubgrlem Structured version   Visualization version   GIF version

Theorem uhgrspansubgrlem 27410
Description: Lemma for uhgrspansubgr 27411: The edges of the graph 𝑆 obtained by removing some edges of a hypergraph 𝐺 are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr 27411. (Contributed by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
uhgrspan.g (𝜑𝐺 ∈ UHGraph)
Assertion
Ref Expression
uhgrspansubgrlem (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))

Proof of Theorem uhgrspansubgrlem
Dummy variables 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 edgval 27172 . . . 4 (Edg‘𝑆) = ran (iEdg‘𝑆)
21eleq2i 2831 . . 3 (𝑒 ∈ (Edg‘𝑆) ↔ 𝑒 ∈ ran (iEdg‘𝑆))
3 uhgrspan.g . . . . . . 7 (𝜑𝐺 ∈ UHGraph)
4 uhgrspan.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
54uhgrfun 27189 . . . . . . 7 (𝐺 ∈ UHGraph → Fun 𝐸)
6 funres 6443 . . . . . . 7 (Fun 𝐸 → Fun (𝐸𝐴))
73, 5, 63syl 18 . . . . . 6 (𝜑 → Fun (𝐸𝐴))
8 uhgrspan.r . . . . . . 7 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
98funeqd 6423 . . . . . 6 (𝜑 → (Fun (iEdg‘𝑆) ↔ Fun (𝐸𝐴)))
107, 9mpbird 260 . . . . 5 (𝜑 → Fun (iEdg‘𝑆))
11 elrnrexdmb 6931 . . . . 5 (Fun (iEdg‘𝑆) → (𝑒 ∈ ran (iEdg‘𝑆) ↔ ∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖)))
1210, 11syl 17 . . . 4 (𝜑 → (𝑒 ∈ ran (iEdg‘𝑆) ↔ ∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖)))
138adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (iEdg‘𝑆) = (𝐸𝐴))
1413fveq1d 6741 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) = ((𝐸𝐴)‘𝑖))
158dmeqd 5792 . . . . . . . . . . . . 13 (𝜑 → dom (iEdg‘𝑆) = dom (𝐸𝐴))
16 dmres 5891 . . . . . . . . . . . . 13 dom (𝐸𝐴) = (𝐴 ∩ dom 𝐸)
1715, 16eqtrdi 2796 . . . . . . . . . . . 12 (𝜑 → dom (iEdg‘𝑆) = (𝐴 ∩ dom 𝐸))
1817eleq2d 2825 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) ↔ 𝑖 ∈ (𝐴 ∩ dom 𝐸)))
19 elinel1 4126 . . . . . . . . . . 11 (𝑖 ∈ (𝐴 ∩ dom 𝐸) → 𝑖𝐴)
2018, 19syl6bi 256 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) → 𝑖𝐴))
2120imp 410 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖𝐴)
2221fvresd 6759 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝐴)‘𝑖) = (𝐸𝑖))
2314, 22eqtrd 2779 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) = (𝐸𝑖))
24 elinel2 4127 . . . . . . . . . . 11 (𝑖 ∈ (𝐴 ∩ dom 𝐸) → 𝑖 ∈ dom 𝐸)
2518, 24syl6bi 256 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) → 𝑖 ∈ dom 𝐸))
2625imp 410 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖 ∈ dom 𝐸)
27 uhgrspan.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
2827, 4uhgrss 27187 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom 𝐸) → (𝐸𝑖) ⊆ 𝑉)
293, 26, 28syl2an2r 685 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝐸𝑖) ⊆ 𝑉)
30 uhgrspan.q . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑆) = 𝑉)
3130pweqd 4549 . . . . . . . . . . 11 (𝜑 → 𝒫 (Vtx‘𝑆) = 𝒫 𝑉)
3231eleq2d 2825 . . . . . . . . . 10 (𝜑 → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ∈ 𝒫 𝑉))
3332adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ∈ 𝒫 𝑉))
34 fvex 6752 . . . . . . . . . 10 (𝐸𝑖) ∈ V
3534elpw 4534 . . . . . . . . 9 ((𝐸𝑖) ∈ 𝒫 𝑉 ↔ (𝐸𝑖) ⊆ 𝑉)
3633, 35bitrdi 290 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ⊆ 𝑉))
3729, 36mpbird 260 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆))
3823, 37eqeltrd 2840 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) ∈ 𝒫 (Vtx‘𝑆))
39 eleq1 2827 . . . . . 6 (𝑒 = ((iEdg‘𝑆)‘𝑖) → (𝑒 ∈ 𝒫 (Vtx‘𝑆) ↔ ((iEdg‘𝑆)‘𝑖) ∈ 𝒫 (Vtx‘𝑆)))
4038, 39syl5ibrcom 250 . . . . 5 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝑒 = ((iEdg‘𝑆)‘𝑖) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4140rexlimdva 3213 . . . 4 (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4212, 41sylbid 243 . . 3 (𝜑 → (𝑒 ∈ ran (iEdg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
432, 42syl5bi 245 . 2 (𝜑 → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4443ssrdv 3924 1 (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wrex 3065  cin 3882  wss 3883  𝒫 cpw 4530  dom cdm 5569  ran crn 5570  cres 5571  Fun wfun 6395  cfv 6401  Vtxcvtx 27119  iEdgciedg 27120  Edgcedg 27170  UHGraphcuhgr 27179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5209  ax-nul 5216  ax-pr 5339  ax-un 7545
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5472  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-fv 6409  df-edg 27171  df-uhgr 27181
This theorem is referenced by:  uhgrspansubgr  27411
  Copyright terms: Public domain W3C validator