MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspansubgrlem Structured version   Visualization version   GIF version

Theorem uhgrspansubgrlem 27657
Description: Lemma for uhgrspansubgr 27658: The edges of the graph 𝑆 obtained by removing some edges of a hypergraph 𝐺 are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr 27658. (Contributed by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
uhgrspan.g (𝜑𝐺 ∈ UHGraph)
Assertion
Ref Expression
uhgrspansubgrlem (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))

Proof of Theorem uhgrspansubgrlem
Dummy variables 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 edgval 27419 . . . 4 (Edg‘𝑆) = ran (iEdg‘𝑆)
21eleq2i 2830 . . 3 (𝑒 ∈ (Edg‘𝑆) ↔ 𝑒 ∈ ran (iEdg‘𝑆))
3 uhgrspan.g . . . . . . 7 (𝜑𝐺 ∈ UHGraph)
4 uhgrspan.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
54uhgrfun 27436 . . . . . . 7 (𝐺 ∈ UHGraph → Fun 𝐸)
6 funres 6476 . . . . . . 7 (Fun 𝐸 → Fun (𝐸𝐴))
73, 5, 63syl 18 . . . . . 6 (𝜑 → Fun (𝐸𝐴))
8 uhgrspan.r . . . . . . 7 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
98funeqd 6456 . . . . . 6 (𝜑 → (Fun (iEdg‘𝑆) ↔ Fun (𝐸𝐴)))
107, 9mpbird 256 . . . . 5 (𝜑 → Fun (iEdg‘𝑆))
11 elrnrexdmb 6966 . . . . 5 (Fun (iEdg‘𝑆) → (𝑒 ∈ ran (iEdg‘𝑆) ↔ ∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖)))
1210, 11syl 17 . . . 4 (𝜑 → (𝑒 ∈ ran (iEdg‘𝑆) ↔ ∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖)))
138adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (iEdg‘𝑆) = (𝐸𝐴))
1413fveq1d 6776 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) = ((𝐸𝐴)‘𝑖))
158dmeqd 5814 . . . . . . . . . . . . 13 (𝜑 → dom (iEdg‘𝑆) = dom (𝐸𝐴))
16 dmres 5913 . . . . . . . . . . . . 13 dom (𝐸𝐴) = (𝐴 ∩ dom 𝐸)
1715, 16eqtrdi 2794 . . . . . . . . . . . 12 (𝜑 → dom (iEdg‘𝑆) = (𝐴 ∩ dom 𝐸))
1817eleq2d 2824 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) ↔ 𝑖 ∈ (𝐴 ∩ dom 𝐸)))
19 elinel1 4129 . . . . . . . . . . 11 (𝑖 ∈ (𝐴 ∩ dom 𝐸) → 𝑖𝐴)
2018, 19syl6bi 252 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) → 𝑖𝐴))
2120imp 407 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖𝐴)
2221fvresd 6794 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝐴)‘𝑖) = (𝐸𝑖))
2314, 22eqtrd 2778 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) = (𝐸𝑖))
24 elinel2 4130 . . . . . . . . . . 11 (𝑖 ∈ (𝐴 ∩ dom 𝐸) → 𝑖 ∈ dom 𝐸)
2518, 24syl6bi 252 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) → 𝑖 ∈ dom 𝐸))
2625imp 407 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖 ∈ dom 𝐸)
27 uhgrspan.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
2827, 4uhgrss 27434 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom 𝐸) → (𝐸𝑖) ⊆ 𝑉)
293, 26, 28syl2an2r 682 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝐸𝑖) ⊆ 𝑉)
30 uhgrspan.q . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑆) = 𝑉)
3130pweqd 4552 . . . . . . . . . . 11 (𝜑 → 𝒫 (Vtx‘𝑆) = 𝒫 𝑉)
3231eleq2d 2824 . . . . . . . . . 10 (𝜑 → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ∈ 𝒫 𝑉))
3332adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ∈ 𝒫 𝑉))
34 fvex 6787 . . . . . . . . . 10 (𝐸𝑖) ∈ V
3534elpw 4537 . . . . . . . . 9 ((𝐸𝑖) ∈ 𝒫 𝑉 ↔ (𝐸𝑖) ⊆ 𝑉)
3633, 35bitrdi 287 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ⊆ 𝑉))
3729, 36mpbird 256 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆))
3823, 37eqeltrd 2839 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) ∈ 𝒫 (Vtx‘𝑆))
39 eleq1 2826 . . . . . 6 (𝑒 = ((iEdg‘𝑆)‘𝑖) → (𝑒 ∈ 𝒫 (Vtx‘𝑆) ↔ ((iEdg‘𝑆)‘𝑖) ∈ 𝒫 (Vtx‘𝑆)))
4038, 39syl5ibrcom 246 . . . . 5 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝑒 = ((iEdg‘𝑆)‘𝑖) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4140rexlimdva 3213 . . . 4 (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4212, 41sylbid 239 . . 3 (𝜑 → (𝑒 ∈ ran (iEdg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
432, 42syl5bi 241 . 2 (𝜑 → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4443ssrdv 3927 1 (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  cin 3886  wss 3887  𝒫 cpw 4533  dom cdm 5589  ran crn 5590  cres 5591  Fun wfun 6427  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  UHGraphcuhgr 27426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-edg 27418  df-uhgr 27428
This theorem is referenced by:  uhgrspansubgr  27658
  Copyright terms: Public domain W3C validator