MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspansubgrlem Structured version   Visualization version   GIF version

Theorem uhgrspansubgrlem 26523
Description: Lemma for uhgrspansubgr 26524: The edges of the graph 𝑆 obtained by removing some edges of a hypergraph 𝐺 are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr 26524. (Contributed by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
uhgrspan.g (𝜑𝐺 ∈ UHGraph)
Assertion
Ref Expression
uhgrspansubgrlem (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))

Proof of Theorem uhgrspansubgrlem
Dummy variables 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 edgval 26283 . . . 4 (Edg‘𝑆) = ran (iEdg‘𝑆)
21eleq2i 2871 . . 3 (𝑒 ∈ (Edg‘𝑆) ↔ 𝑒 ∈ ran (iEdg‘𝑆))
3 uhgrspan.g . . . . . . 7 (𝜑𝐺 ∈ UHGraph)
4 uhgrspan.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
54uhgrfun 26300 . . . . . . 7 (𝐺 ∈ UHGraph → Fun 𝐸)
6 funres 6144 . . . . . . 7 (Fun 𝐸 → Fun (𝐸𝐴))
73, 5, 63syl 18 . . . . . 6 (𝜑 → Fun (𝐸𝐴))
8 uhgrspan.r . . . . . . 7 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
98funeqd 6124 . . . . . 6 (𝜑 → (Fun (iEdg‘𝑆) ↔ Fun (𝐸𝐴)))
107, 9mpbird 249 . . . . 5 (𝜑 → Fun (iEdg‘𝑆))
11 elrnrexdmb 6591 . . . . 5 (Fun (iEdg‘𝑆) → (𝑒 ∈ ran (iEdg‘𝑆) ↔ ∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖)))
1210, 11syl 17 . . . 4 (𝜑 → (𝑒 ∈ ran (iEdg‘𝑆) ↔ ∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖)))
138adantr 473 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (iEdg‘𝑆) = (𝐸𝐴))
1413fveq1d 6414 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) = ((𝐸𝐴)‘𝑖))
158dmeqd 5530 . . . . . . . . . . . . 13 (𝜑 → dom (iEdg‘𝑆) = dom (𝐸𝐴))
16 dmres 5630 . . . . . . . . . . . . 13 dom (𝐸𝐴) = (𝐴 ∩ dom 𝐸)
1715, 16syl6eq 2850 . . . . . . . . . . . 12 (𝜑 → dom (iEdg‘𝑆) = (𝐴 ∩ dom 𝐸))
1817eleq2d 2865 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) ↔ 𝑖 ∈ (𝐴 ∩ dom 𝐸)))
19 elinel1 3998 . . . . . . . . . . 11 (𝑖 ∈ (𝐴 ∩ dom 𝐸) → 𝑖𝐴)
2018, 19syl6bi 245 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) → 𝑖𝐴))
2120imp 396 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖𝐴)
2221fvresd 6432 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝐴)‘𝑖) = (𝐸𝑖))
2314, 22eqtrd 2834 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) = (𝐸𝑖))
24 elinel2 3999 . . . . . . . . . . 11 (𝑖 ∈ (𝐴 ∩ dom 𝐸) → 𝑖 ∈ dom 𝐸)
2518, 24syl6bi 245 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) → 𝑖 ∈ dom 𝐸))
2625imp 396 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖 ∈ dom 𝐸)
27 uhgrspan.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
2827, 4uhgrss 26298 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom 𝐸) → (𝐸𝑖) ⊆ 𝑉)
293, 26, 28syl2an2r 676 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝐸𝑖) ⊆ 𝑉)
30 uhgrspan.q . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑆) = 𝑉)
3130pweqd 4355 . . . . . . . . . . 11 (𝜑 → 𝒫 (Vtx‘𝑆) = 𝒫 𝑉)
3231eleq2d 2865 . . . . . . . . . 10 (𝜑 → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ∈ 𝒫 𝑉))
3332adantr 473 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ∈ 𝒫 𝑉))
34 fvex 6425 . . . . . . . . . 10 (𝐸𝑖) ∈ V
3534elpw 4356 . . . . . . . . 9 ((𝐸𝑖) ∈ 𝒫 𝑉 ↔ (𝐸𝑖) ⊆ 𝑉)
3633, 35syl6bb 279 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ⊆ 𝑉))
3729, 36mpbird 249 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆))
3823, 37eqeltrd 2879 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) ∈ 𝒫 (Vtx‘𝑆))
39 eleq1 2867 . . . . . 6 (𝑒 = ((iEdg‘𝑆)‘𝑖) → (𝑒 ∈ 𝒫 (Vtx‘𝑆) ↔ ((iEdg‘𝑆)‘𝑖) ∈ 𝒫 (Vtx‘𝑆)))
4038, 39syl5ibrcom 239 . . . . 5 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝑒 = ((iEdg‘𝑆)‘𝑖) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4140rexlimdva 3213 . . . 4 (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4212, 41sylbid 232 . . 3 (𝜑 → (𝑒 ∈ ran (iEdg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
432, 42syl5bi 234 . 2 (𝜑 → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4443ssrdv 3805 1 (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wrex 3091  cin 3769  wss 3770  𝒫 cpw 4350  dom cdm 5313  ran crn 5314  cres 5315  Fun wfun 6096  cfv 6102  Vtxcvtx 26230  iEdgciedg 26231  Edgcedg 26281  UHGraphcuhgr 26290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-fv 6110  df-edg 26282  df-uhgr 26292
This theorem is referenced by:  uhgrspansubgr  26524
  Copyright terms: Public domain W3C validator