MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspansubgrlem Structured version   Visualization version   GIF version

Theorem uhgrspansubgrlem 27080
Description: Lemma for uhgrspansubgr 27081: The edges of the graph 𝑆 obtained by removing some edges of a hypergraph 𝐺 are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr 27081. (Contributed by AV, 18-Nov-2020.)
Hypotheses
Ref Expression
uhgrspan.v 𝑉 = (Vtx‘𝐺)
uhgrspan.e 𝐸 = (iEdg‘𝐺)
uhgrspan.s (𝜑𝑆𝑊)
uhgrspan.q (𝜑 → (Vtx‘𝑆) = 𝑉)
uhgrspan.r (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
uhgrspan.g (𝜑𝐺 ∈ UHGraph)
Assertion
Ref Expression
uhgrspansubgrlem (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))

Proof of Theorem uhgrspansubgrlem
Dummy variables 𝑒 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 edgval 26842 . . . 4 (Edg‘𝑆) = ran (iEdg‘𝑆)
21eleq2i 2881 . . 3 (𝑒 ∈ (Edg‘𝑆) ↔ 𝑒 ∈ ran (iEdg‘𝑆))
3 uhgrspan.g . . . . . . 7 (𝜑𝐺 ∈ UHGraph)
4 uhgrspan.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
54uhgrfun 26859 . . . . . . 7 (𝐺 ∈ UHGraph → Fun 𝐸)
6 funres 6366 . . . . . . 7 (Fun 𝐸 → Fun (𝐸𝐴))
73, 5, 63syl 18 . . . . . 6 (𝜑 → Fun (𝐸𝐴))
8 uhgrspan.r . . . . . . 7 (𝜑 → (iEdg‘𝑆) = (𝐸𝐴))
98funeqd 6346 . . . . . 6 (𝜑 → (Fun (iEdg‘𝑆) ↔ Fun (𝐸𝐴)))
107, 9mpbird 260 . . . . 5 (𝜑 → Fun (iEdg‘𝑆))
11 elrnrexdmb 6833 . . . . 5 (Fun (iEdg‘𝑆) → (𝑒 ∈ ran (iEdg‘𝑆) ↔ ∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖)))
1210, 11syl 17 . . . 4 (𝜑 → (𝑒 ∈ ran (iEdg‘𝑆) ↔ ∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖)))
138adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (iEdg‘𝑆) = (𝐸𝐴))
1413fveq1d 6647 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) = ((𝐸𝐴)‘𝑖))
158dmeqd 5738 . . . . . . . . . . . . 13 (𝜑 → dom (iEdg‘𝑆) = dom (𝐸𝐴))
16 dmres 5840 . . . . . . . . . . . . 13 dom (𝐸𝐴) = (𝐴 ∩ dom 𝐸)
1715, 16eqtrdi 2849 . . . . . . . . . . . 12 (𝜑 → dom (iEdg‘𝑆) = (𝐴 ∩ dom 𝐸))
1817eleq2d 2875 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) ↔ 𝑖 ∈ (𝐴 ∩ dom 𝐸)))
19 elinel1 4122 . . . . . . . . . . 11 (𝑖 ∈ (𝐴 ∩ dom 𝐸) → 𝑖𝐴)
2018, 19syl6bi 256 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) → 𝑖𝐴))
2120imp 410 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖𝐴)
2221fvresd 6665 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝐴)‘𝑖) = (𝐸𝑖))
2314, 22eqtrd 2833 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) = (𝐸𝑖))
24 elinel2 4123 . . . . . . . . . . 11 (𝑖 ∈ (𝐴 ∩ dom 𝐸) → 𝑖 ∈ dom 𝐸)
2518, 24syl6bi 256 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ dom (iEdg‘𝑆) → 𝑖 ∈ dom 𝐸))
2625imp 410 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → 𝑖 ∈ dom 𝐸)
27 uhgrspan.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
2827, 4uhgrss 26857 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑖 ∈ dom 𝐸) → (𝐸𝑖) ⊆ 𝑉)
293, 26, 28syl2an2r 684 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝐸𝑖) ⊆ 𝑉)
30 uhgrspan.q . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑆) = 𝑉)
3130pweqd 4516 . . . . . . . . . . 11 (𝜑 → 𝒫 (Vtx‘𝑆) = 𝒫 𝑉)
3231eleq2d 2875 . . . . . . . . . 10 (𝜑 → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ∈ 𝒫 𝑉))
3332adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ∈ 𝒫 𝑉))
34 fvex 6658 . . . . . . . . . 10 (𝐸𝑖) ∈ V
3534elpw 4501 . . . . . . . . 9 ((𝐸𝑖) ∈ 𝒫 𝑉 ↔ (𝐸𝑖) ⊆ 𝑉)
3633, 35syl6bb 290 . . . . . . . 8 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆) ↔ (𝐸𝑖) ⊆ 𝑉))
3729, 36mpbird 260 . . . . . . 7 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝐸𝑖) ∈ 𝒫 (Vtx‘𝑆))
3823, 37eqeltrd 2890 . . . . . 6 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → ((iEdg‘𝑆)‘𝑖) ∈ 𝒫 (Vtx‘𝑆))
39 eleq1 2877 . . . . . 6 (𝑒 = ((iEdg‘𝑆)‘𝑖) → (𝑒 ∈ 𝒫 (Vtx‘𝑆) ↔ ((iEdg‘𝑆)‘𝑖) ∈ 𝒫 (Vtx‘𝑆)))
4038, 39syl5ibrcom 250 . . . . 5 ((𝜑𝑖 ∈ dom (iEdg‘𝑆)) → (𝑒 = ((iEdg‘𝑆)‘𝑖) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4140rexlimdva 3243 . . . 4 (𝜑 → (∃𝑖 ∈ dom (iEdg‘𝑆)𝑒 = ((iEdg‘𝑆)‘𝑖) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4212, 41sylbid 243 . . 3 (𝜑 → (𝑒 ∈ ran (iEdg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
432, 42syl5bi 245 . 2 (𝜑 → (𝑒 ∈ (Edg‘𝑆) → 𝑒 ∈ 𝒫 (Vtx‘𝑆)))
4443ssrdv 3921 1 (𝜑 → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  cin 3880  wss 3881  𝒫 cpw 4497  dom cdm 5519  ran crn 5520  cres 5521  Fun wfun 6318  cfv 6324  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840  UHGraphcuhgr 26849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-edg 26841  df-uhgr 26851
This theorem is referenced by:  uhgrspansubgr  27081
  Copyright terms: Public domain W3C validator