| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elsigass | Structured version Visualization version GIF version | ||
| Description: An element of a sigma-algebra is a subset of the base set. (Contributed by Thierry Arnoux, 6-Jun-2017.) |
| Ref | Expression |
|---|---|
| elsigass | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆) → 𝐴 ⊆ ∪ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgon 34105 | . . . 4 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) | |
| 2 | sigasspw 34097 | . . . 4 ⊢ (𝑆 ∈ (sigAlgebra‘∪ 𝑆) → 𝑆 ⊆ 𝒫 ∪ 𝑆) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ⊆ 𝒫 ∪ 𝑆) |
| 4 | 3 | sselda 3931 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ 𝒫 ∪ 𝑆) |
| 5 | 4 | elpwid 4556 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆) → 𝐴 ⊆ ∪ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3899 𝒫 cpw 4547 ∪ cuni 4856 ran crn 5614 ‘cfv 6476 sigAlgebracsiga 34089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5089 df-opab 5151 df-mpt 5170 df-id 5508 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 df-siga 34090 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |