Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsigass Structured version   Visualization version   GIF version

Theorem elsigass 31498
Description: An element of a sigma-algebra is a subset of the base set. (Contributed by Thierry Arnoux, 6-Jun-2017.)
Assertion
Ref Expression
elsigass ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 𝑆)

Proof of Theorem elsigass
StepHypRef Expression
1 sgon 31497 . . . 4 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
2 sigasspw 31489 . . . 4 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆 ⊆ 𝒫 𝑆)
31, 2syl 17 . . 3 (𝑆 ran sigAlgebra → 𝑆 ⊆ 𝒫 𝑆)
43sselda 3918 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 ∈ 𝒫 𝑆)
54elpwid 4511 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  wss 3884  𝒫 cpw 4500   cuni 4803  ran crn 5524  cfv 6328  sigAlgebracsiga 31481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-fv 6336  df-siga 31482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator