Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsigass | Structured version Visualization version GIF version |
Description: An element of a sigma-algebra is a subset of the base set. (Contributed by Thierry Arnoux, 6-Jun-2017.) |
Ref | Expression |
---|---|
elsigass | ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆) → 𝐴 ⊆ ∪ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgon 32390 | . . . 4 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) | |
2 | sigasspw 32382 | . . . 4 ⊢ (𝑆 ∈ (sigAlgebra‘∪ 𝑆) → 𝑆 ⊆ 𝒫 ∪ 𝑆) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ⊆ 𝒫 ∪ 𝑆) |
4 | 3 | sselda 3932 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ 𝒫 ∪ 𝑆) |
5 | 4 | elpwid 4557 | 1 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆) → 𝐴 ⊆ ∪ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ⊆ wss 3898 𝒫 cpw 4548 ∪ cuni 4853 ran crn 5622 ‘cfv 6480 sigAlgebracsiga 32374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-fv 6488 df-siga 32375 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |