Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsigass Structured version   Visualization version   GIF version

Theorem elsigass 34106
Description: An element of a sigma-algebra is a subset of the base set. (Contributed by Thierry Arnoux, 6-Jun-2017.)
Assertion
Ref Expression
elsigass ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 𝑆)

Proof of Theorem elsigass
StepHypRef Expression
1 sgon 34105 . . . 4 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
2 sigasspw 34097 . . . 4 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆 ⊆ 𝒫 𝑆)
31, 2syl 17 . . 3 (𝑆 ran sigAlgebra → 𝑆 ⊆ 𝒫 𝑆)
43sselda 3931 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 ∈ 𝒫 𝑆)
54elpwid 4556 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3899  𝒫 cpw 4547   cuni 4856  ran crn 5614  cfv 6476  sigAlgebracsiga 34089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5089  df-opab 5151  df-mpt 5170  df-id 5508  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-iota 6432  df-fun 6478  df-fn 6479  df-fv 6484  df-siga 34090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator