Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigasspw Structured version   Visualization version   GIF version

Theorem sigasspw 34072
Description: A sigma-algebra is a set of subset of the base set. (Contributed by Thierry Arnoux, 18-Jan-2017.)
Assertion
Ref Expression
sigasspw (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ⊆ 𝒫 𝐴)

Proof of Theorem sigasspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3504 . . 3 (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ∈ V)
2 issiga 34068 . . . 4 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝐴) ↔ (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
32biimpa 476 . . 3 ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
41, 3mpancom 687 . 2 (𝑆 ∈ (sigAlgebra‘𝐴) → (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
54simpld 494 1 (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2103  wral 3063  Vcvv 3482  cdif 3967  wss 3970  𝒫 cpw 4622   cuni 4931   class class class wbr 5169  cfv 6572  ωcom 7899  cdom 8997  sigAlgebracsiga 34064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-iota 6524  df-fun 6574  df-fv 6580  df-siga 34065
This theorem is referenced by:  elsigass  34081  insiga  34093  sigapisys  34111  sigaldsys  34115  brsigasspwrn  34141  1stmbfm  34217  2ndmbfm  34218
  Copyright terms: Public domain W3C validator