| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigasspw | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is a set of subset of the base set. (Contributed by Thierry Arnoux, 18-Jan-2017.) |
| Ref | Expression |
|---|---|
| sigasspw | ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3484 | . . 3 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ∈ V) | |
| 2 | issiga 34072 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝐴) ↔ (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
| 3 | 2 | biimpa 476 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
| 4 | 1, 3 | mpancom 688 | . 2 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆)))) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ⊆ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ∖ cdif 3928 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4887 class class class wbr 5123 ‘cfv 6541 ωcom 7869 ≼ cdom 8965 sigAlgebracsiga 34068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-siga 34069 |
| This theorem is referenced by: elsigass 34085 insiga 34097 sigapisys 34115 sigaldsys 34119 brsigasspwrn 34145 1stmbfm 34221 2ndmbfm 34222 |
| Copyright terms: Public domain | W3C validator |