Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigasspw Structured version   Visualization version   GIF version

Theorem sigasspw 32063
Description: A sigma-algebra is a set of subset of the base set. (Contributed by Thierry Arnoux, 18-Jan-2017.)
Assertion
Ref Expression
sigasspw (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ⊆ 𝒫 𝐴)

Proof of Theorem sigasspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3448 . . 3 (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ∈ V)
2 issiga 32059 . . . 4 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝐴) ↔ (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
32biimpa 476 . . 3 ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
41, 3mpancom 684 . 2 (𝑆 ∈ (sigAlgebra‘𝐴) → (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
54simpld 494 1 (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2109  wral 3065  Vcvv 3430  cdif 3888  wss 3891  𝒫 cpw 4538   cuni 4844   class class class wbr 5078  cfv 6430  ωcom 7700  cdom 8705  sigAlgebracsiga 32055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-siga 32056
This theorem is referenced by:  elsigass  32072  insiga  32084  sigapisys  32102  sigaldsys  32106  brsigasspwrn  32132  1stmbfm  32206  2ndmbfm  32207
  Copyright terms: Public domain W3C validator