Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigasspw Structured version   Visualization version   GIF version

Theorem sigasspw 34150
Description: A sigma-algebra is a set of subset of the base set. (Contributed by Thierry Arnoux, 18-Jan-2017.)
Assertion
Ref Expression
sigasspw (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ⊆ 𝒫 𝐴)

Proof of Theorem sigasspw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . . 3 (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ∈ V)
2 issiga 34146 . . . 4 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝐴) ↔ (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
32biimpa 476 . . 3 ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
41, 3mpancom 688 . 2 (𝑆 ∈ (sigAlgebra‘𝐴) → (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴𝑆 ∧ ∀𝑥𝑆 (𝐴𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
54simpld 494 1 (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2113  wral 3048  Vcvv 3437  cdif 3895  wss 3898  𝒫 cpw 4549   cuni 4858   class class class wbr 5093  cfv 6486  ωcom 7802  cdom 8873  sigAlgebracsiga 34142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-siga 34143
This theorem is referenced by:  elsigass  34159  insiga  34171  sigapisys  34189  sigaldsys  34193  brsigasspwrn  34219  1stmbfm  34294  2ndmbfm  34295
  Copyright terms: Public domain W3C validator