Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnsiga Structured version   Visualization version   GIF version

Theorem elrnsiga 30787
Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.)
Assertion
Ref Expression
elrnsiga (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)

Proof of Theorem elrnsiga
StepHypRef Expression
1 fvssunirn 6475 . 2 (sigAlgebra‘𝑂) ⊆ ran sigAlgebra
21sseli 3817 1 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   cuni 4671  ran crn 5356  cfv 6135  sigAlgebracsiga 30768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-cnv 5363  df-dm 5365  df-rn 5366  df-iota 6099  df-fv 6143
This theorem is referenced by:  sgsiga  30803  sigapisys  30816  sigaldsys  30820  brsiga  30844  sxsiga  30852  measinb2  30884  pwcntmeas  30888  ddemeas  30897  cnmbfm  30923  elmbfmvol2  30927  mbfmcnt  30928  br2base  30929  dya2iocbrsiga  30935  dya2icobrsiga  30936  sxbrsiga  30950  omsmeas  30983  isrrvv  31104  rrvadd  31113  rrvmulc  31114  dstrvprob  31132
  Copyright terms: Public domain W3C validator