| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnsiga | Structured version Visualization version GIF version | ||
| Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| elrnsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn 6859 | . 2 ⊢ (sigAlgebra‘𝑂) ⊆ ∪ ran sigAlgebra | |
| 2 | 1 | sseli 3925 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∪ cuni 4858 ran crn 5620 ‘cfv 6487 sigAlgebracsiga 34128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 df-iota 6443 df-fv 6495 |
| This theorem is referenced by: sgsiga 34162 sigapisys 34175 sigaldsys 34179 brsiga 34203 sxsiga 34211 measinb2 34243 pwcntmeas 34247 ddemeas 34256 cnmbfm 34283 elmbfmvol2 34287 mbfmcnt 34288 br2base 34289 dya2iocbrsiga 34295 dya2icobrsiga 34296 sxbrsiga 34310 omsmeas 34343 isrrvv 34463 rrvadd 34472 rrvmulc 34473 dstrvprob 34492 |
| Copyright terms: Public domain | W3C validator |