| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnsiga | Structured version Visualization version GIF version | ||
| Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| elrnsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn 6873 | . 2 ⊢ (sigAlgebra‘𝑂) ⊆ ∪ ran sigAlgebra | |
| 2 | 1 | sseli 3939 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cuni 4867 ran crn 5632 ‘cfv 6499 sigAlgebracsiga 34092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: sgsiga 34126 sigapisys 34139 sigaldsys 34143 brsiga 34167 sxsiga 34175 measinb2 34207 pwcntmeas 34211 ddemeas 34220 cnmbfm 34248 elmbfmvol2 34252 mbfmcnt 34253 br2base 34254 dya2iocbrsiga 34260 dya2icobrsiga 34261 sxbrsiga 34275 omsmeas 34308 isrrvv 34428 rrvadd 34437 rrvmulc 34438 dstrvprob 34457 |
| Copyright terms: Public domain | W3C validator |