Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnsiga Structured version   Visualization version   GIF version

Theorem elrnsiga 33124
Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.)
Assertion
Ref Expression
elrnsiga (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)

Proof of Theorem elrnsiga
StepHypRef Expression
1 fvssunirn 6925 . 2 (sigAlgebra‘𝑂) ⊆ ran sigAlgebra
21sseli 3979 1 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   cuni 4909  ran crn 5678  cfv 6544  sigAlgebracsiga 33106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-cnv 5685  df-dm 5687  df-rn 5688  df-iota 6496  df-fv 6552
This theorem is referenced by:  sgsiga  33140  sigapisys  33153  sigaldsys  33157  brsiga  33181  sxsiga  33189  measinb2  33221  pwcntmeas  33225  ddemeas  33234  cnmbfm  33262  elmbfmvol2  33266  mbfmcnt  33267  br2base  33268  dya2iocbrsiga  33274  dya2icobrsiga  33275  sxbrsiga  33289  omsmeas  33322  isrrvv  33442  rrvadd  33451  rrvmulc  33452  dstrvprob  33470
  Copyright terms: Public domain W3C validator