Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnsiga Structured version   Visualization version   GIF version

Theorem elrnsiga 34107
Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.)
Assertion
Ref Expression
elrnsiga (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)

Proof of Theorem elrnsiga
StepHypRef Expression
1 fvssunirn 6847 . 2 (sigAlgebra‘𝑂) ⊆ ran sigAlgebra
21sseli 3927 1 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   cuni 4856  ran crn 5614  cfv 6476  sigAlgebracsiga 34089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5231  ax-nul 5241  ax-pr 5367
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3393  df-v 3435  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5089  df-opab 5151  df-cnv 5621  df-dm 5623  df-rn 5624  df-iota 6432  df-fv 6484
This theorem is referenced by:  sgsiga  34123  sigapisys  34136  sigaldsys  34140  brsiga  34164  sxsiga  34172  measinb2  34204  pwcntmeas  34208  ddemeas  34217  cnmbfm  34244  elmbfmvol2  34248  mbfmcnt  34249  br2base  34250  dya2iocbrsiga  34256  dya2icobrsiga  34257  sxbrsiga  34271  omsmeas  34304  isrrvv  34424  rrvadd  34433  rrvmulc  34434  dstrvprob  34453
  Copyright terms: Public domain W3C validator