| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnsiga | Structured version Visualization version GIF version | ||
| Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| elrnsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn 6909 | . 2 ⊢ (sigAlgebra‘𝑂) ⊆ ∪ ran sigAlgebra | |
| 2 | 1 | sseli 3954 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4883 ran crn 5655 ‘cfv 6531 sigAlgebracsiga 34139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-iota 6484 df-fv 6539 |
| This theorem is referenced by: sgsiga 34173 sigapisys 34186 sigaldsys 34190 brsiga 34214 sxsiga 34222 measinb2 34254 pwcntmeas 34258 ddemeas 34267 cnmbfm 34295 elmbfmvol2 34299 mbfmcnt 34300 br2base 34301 dya2iocbrsiga 34307 dya2icobrsiga 34308 sxbrsiga 34322 omsmeas 34355 isrrvv 34475 rrvadd 34484 rrvmulc 34485 dstrvprob 34504 |
| Copyright terms: Public domain | W3C validator |