Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnsiga | Structured version Visualization version GIF version |
Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
Ref | Expression |
---|---|
elrnsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvssunirn 6859 | . 2 ⊢ (sigAlgebra‘𝑂) ⊆ ∪ ran sigAlgebra | |
2 | 1 | sseli 3928 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∪ cuni 4853 ran crn 5622 ‘cfv 6480 sigAlgebracsiga 32374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-cnv 5629 df-dm 5631 df-rn 5632 df-iota 6432 df-fv 6488 |
This theorem is referenced by: sgsiga 32408 sigapisys 32421 sigaldsys 32425 brsiga 32449 sxsiga 32457 measinb2 32489 pwcntmeas 32493 ddemeas 32502 cnmbfm 32530 elmbfmvol2 32534 mbfmcnt 32535 br2base 32536 dya2iocbrsiga 32542 dya2icobrsiga 32543 sxbrsiga 32557 omsmeas 32590 isrrvv 32710 rrvadd 32719 rrvmulc 32720 dstrvprob 32738 |
Copyright terms: Public domain | W3C validator |