![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnsiga | Structured version Visualization version GIF version |
Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
Ref | Expression |
---|---|
elrnsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvssunirn 6953 | . 2 ⊢ (sigAlgebra‘𝑂) ⊆ ∪ ran sigAlgebra | |
2 | 1 | sseli 4004 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4931 ran crn 5701 ‘cfv 6573 sigAlgebracsiga 34072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-iota 6525 df-fv 6581 |
This theorem is referenced by: sgsiga 34106 sigapisys 34119 sigaldsys 34123 brsiga 34147 sxsiga 34155 measinb2 34187 pwcntmeas 34191 ddemeas 34200 cnmbfm 34228 elmbfmvol2 34232 mbfmcnt 34233 br2base 34234 dya2iocbrsiga 34240 dya2icobrsiga 34241 sxbrsiga 34255 omsmeas 34288 isrrvv 34408 rrvadd 34417 rrvmulc 34418 dstrvprob 34436 |
Copyright terms: Public domain | W3C validator |