| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnsiga | Structured version Visualization version GIF version | ||
| Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| elrnsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn 6847 | . 2 ⊢ (sigAlgebra‘𝑂) ⊆ ∪ ran sigAlgebra | |
| 2 | 1 | sseli 3927 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cuni 4856 ran crn 5614 ‘cfv 6476 sigAlgebracsiga 34089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pr 5367 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3393 df-v 3435 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5089 df-opab 5151 df-cnv 5621 df-dm 5623 df-rn 5624 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: sgsiga 34123 sigapisys 34136 sigaldsys 34140 brsiga 34164 sxsiga 34172 measinb2 34204 pwcntmeas 34208 ddemeas 34217 cnmbfm 34244 elmbfmvol2 34248 mbfmcnt 34249 br2base 34250 dya2iocbrsiga 34256 dya2icobrsiga 34257 sxbrsiga 34271 omsmeas 34304 isrrvv 34424 rrvadd 34433 rrvmulc 34434 dstrvprob 34453 |
| Copyright terms: Public domain | W3C validator |