Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnsiga | Structured version Visualization version GIF version |
Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
Ref | Expression |
---|---|
elrnsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvssunirn 6785 | . 2 ⊢ (sigAlgebra‘𝑂) ⊆ ∪ ran sigAlgebra | |
2 | 1 | sseli 3913 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ ∪ ran sigAlgebra) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cuni 4836 ran crn 5581 ‘cfv 6418 sigAlgebracsiga 31976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 |
This theorem is referenced by: sgsiga 32010 sigapisys 32023 sigaldsys 32027 brsiga 32051 sxsiga 32059 measinb2 32091 pwcntmeas 32095 ddemeas 32104 cnmbfm 32130 elmbfmvol2 32134 mbfmcnt 32135 br2base 32136 dya2iocbrsiga 32142 dya2icobrsiga 32143 sxbrsiga 32157 omsmeas 32190 isrrvv 32310 rrvadd 32319 rrvmulc 32320 dstrvprob 32338 |
Copyright terms: Public domain | W3C validator |