Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnsiga Structured version   Visualization version   GIF version

Theorem elrnsiga 32392
Description: Dropping the base information off a sigma-algebra. (Contributed by Thierry Arnoux, 13-Feb-2017.)
Assertion
Ref Expression
elrnsiga (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)

Proof of Theorem elrnsiga
StepHypRef Expression
1 fvssunirn 6859 . 2 (sigAlgebra‘𝑂) ⊆ ran sigAlgebra
21sseli 3928 1 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ran sigAlgebra)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105   cuni 4853  ran crn 5622  cfv 6480  sigAlgebracsiga 32374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-cnv 5629  df-dm 5631  df-rn 5632  df-iota 6432  df-fv 6488
This theorem is referenced by:  sgsiga  32408  sigapisys  32421  sigaldsys  32425  brsiga  32449  sxsiga  32457  measinb2  32489  pwcntmeas  32493  ddemeas  32502  cnmbfm  32530  elmbfmvol2  32534  mbfmcnt  32535  br2base  32536  dya2iocbrsiga  32542  dya2icobrsiga  32543  sxbrsiga  32557  omsmeas  32590  isrrvv  32710  rrvadd  32719  rrvmulc  32720  dstrvprob  32738
  Copyright terms: Public domain W3C validator