![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgon | Structured version Visualization version GIF version |
Description: A sigma-algebra is a sigma on its union set. (Contributed by Thierry Arnoux, 6-Jun-2017.) |
Ref | Expression |
---|---|
sgon | ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2777 | . 2 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
2 | issgon 30784 | . . 3 ⊢ (𝑆 ∈ (sigAlgebra‘∪ 𝑆) ↔ (𝑆 ∈ ∪ ran sigAlgebra ∧ ∪ 𝑆 = ∪ 𝑆)) | |
3 | 2 | biimpri 220 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∪ 𝑆 = ∪ 𝑆) → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) |
4 | 1, 3 | mpan2 681 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∪ cuni 4671 ran crn 5356 ‘cfv 6135 sigAlgebracsiga 30768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-fv 6143 df-siga 30769 |
This theorem is referenced by: elsigass 30786 isrnsigau 30788 unielsiga 30789 sigagenid 30812 1stmbfm 30920 2ndmbfm 30921 unveldomd 31076 probmeasb 31091 |
Copyright terms: Public domain | W3C validator |