| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgon | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra is a sigma on its union set. (Contributed by Thierry Arnoux, 6-Jun-2017.) |
| Ref | Expression |
|---|---|
| sgon | ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 2 | issgon 34090 | . . 3 ⊢ (𝑆 ∈ (sigAlgebra‘∪ 𝑆) ↔ (𝑆 ∈ ∪ ran sigAlgebra ∧ ∪ 𝑆 = ∪ 𝑆)) | |
| 3 | 2 | biimpri 228 | . 2 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∪ 𝑆 = ∪ 𝑆) → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) |
| 4 | 1, 3 | mpan2 691 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cuni 4858 ran crn 5620 ‘cfv 6482 sigAlgebracsiga 34075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 df-siga 34076 |
| This theorem is referenced by: elsigass 34092 isrnsigau 34094 unielsiga 34095 sigagenid 34118 1stmbfm 34228 2ndmbfm 34229 unveldomd 34383 probmeasb 34398 |
| Copyright terms: Public domain | W3C validator |