|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eltop3 | Structured version Visualization version GIF version | ||
| Description: Membership in a topology. (Contributed by NM, 19-Jul-2006.) | 
| Ref | Expression | 
|---|---|
| eltop3 | ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∃𝑥(𝑥 ⊆ 𝐽 ∧ 𝐴 = ∪ 𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tgtop 22981 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 2 | 1 | eleq2d 2826 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ 𝐴 ∈ 𝐽)) | 
| 3 | eltg3 22970 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ∈ (topGen‘𝐽) ↔ ∃𝑥(𝑥 ⊆ 𝐽 ∧ 𝐴 = ∪ 𝑥))) | |
| 4 | 2, 3 | bitr3d 281 | 1 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝐽 ↔ ∃𝑥(𝑥 ⊆ 𝐽 ∧ 𝐴 = ∪ 𝑥))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ⊆ wss 3950 ∪ cuni 4906 ‘cfv 6560 topGenctg 17483 Topctop 22900 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-topgen 17489 df-top 22901 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |