| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltg3 | Structured version Visualization version GIF version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| eltg3 | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6856 | . . . 4 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) | |
| 2 | inex1g 5257 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ∈ V) |
| 4 | eltg4i 22873 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) | |
| 5 | inss1 4187 | . . . . . 6 ⊢ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵 | |
| 6 | sseq1 3960 | . . . . . 6 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝑥 ⊆ 𝐵 ↔ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵)) | |
| 7 | 5, 6 | mpbiri 258 | . . . . 5 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝐵) |
| 8 | 7 | biantrurd 532 | . . . 4 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = ∪ 𝑥 ↔ (𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
| 9 | unieq 4870 | . . . . 5 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ∪ 𝑥 = ∪ (𝐵 ∩ 𝒫 𝐴)) | |
| 10 | 9 | eqeq2d 2742 | . . . 4 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = ∪ 𝑥 ↔ 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 11 | 8, 10 | bitr3d 281 | . . 3 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ((𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) ↔ 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 12 | 3, 4, 11 | spcedv 3553 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥)) |
| 13 | eltg3i 22874 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵) → ∪ 𝑥 ∈ (topGen‘𝐵)) | |
| 14 | eleq1 2819 | . . . . 5 ⊢ (𝐴 = ∪ 𝑥 → (𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝑥 ∈ (topGen‘𝐵))) | |
| 15 | 13, 14 | syl5ibrcom 247 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵) → (𝐴 = ∪ 𝑥 → 𝐴 ∈ (topGen‘𝐵))) |
| 16 | 15 | expimpd 453 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) → 𝐴 ∈ (topGen‘𝐵))) |
| 17 | 16 | exlimdv 1934 | . 2 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) → 𝐴 ∈ (topGen‘𝐵))) |
| 18 | 12, 17 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 dom cdm 5616 ‘cfv 6481 topGenctg 17338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-topgen 17344 |
| This theorem is referenced by: tgval3 22876 tgtop 22886 eltop3 22889 tgidm 22893 bastop1 22906 tgrest 23072 tgcn 23165 txbasval 23519 opnmblALT 25529 mbfimaopnlem 25581 isfne3 36376 fneuni 36380 dissneqlem 37373 tgqioo2 45586 |
| Copyright terms: Public domain | W3C validator |