MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltg3 Structured version   Visualization version   GIF version

Theorem eltg3 22865
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
eltg3 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉

Proof of Theorem eltg3
StepHypRef Expression
1 elfvdm 6861 . . . 4 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
2 inex1g 5261 . . . 4 (𝐵 ∈ dom topGen → (𝐵 ∩ 𝒫 𝐴) ∈ V)
31, 2syl 17 . . 3 (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ∈ V)
4 eltg4i 22863 . . 3 (𝐴 ∈ (topGen‘𝐵) → 𝐴 = (𝐵 ∩ 𝒫 𝐴))
5 inss1 4190 . . . . . 6 (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵
6 sseq1 3963 . . . . . 6 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝑥𝐵 ↔ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵))
75, 6mpbiri 258 . . . . 5 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥𝐵)
87biantrurd 532 . . . 4 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = 𝑥 ↔ (𝑥𝐵𝐴 = 𝑥)))
9 unieq 4872 . . . . 5 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥 = (𝐵 ∩ 𝒫 𝐴))
109eqeq2d 2740 . . . 4 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = 𝑥𝐴 = (𝐵 ∩ 𝒫 𝐴)))
118, 10bitr3d 281 . . 3 (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ((𝑥𝐵𝐴 = 𝑥) ↔ 𝐴 = (𝐵 ∩ 𝒫 𝐴)))
123, 4, 11spcedv 3555 . 2 (𝐴 ∈ (topGen‘𝐵) → ∃𝑥(𝑥𝐵𝐴 = 𝑥))
13 eltg3i 22864 . . . . 5 ((𝐵𝑉𝑥𝐵) → 𝑥 ∈ (topGen‘𝐵))
14 eleq1 2816 . . . . 5 (𝐴 = 𝑥 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝑥 ∈ (topGen‘𝐵)))
1513, 14syl5ibrcom 247 . . . 4 ((𝐵𝑉𝑥𝐵) → (𝐴 = 𝑥𝐴 ∈ (topGen‘𝐵)))
1615expimpd 453 . . 3 (𝐵𝑉 → ((𝑥𝐵𝐴 = 𝑥) → 𝐴 ∈ (topGen‘𝐵)))
1716exlimdv 1933 . 2 (𝐵𝑉 → (∃𝑥(𝑥𝐵𝐴 = 𝑥) → 𝐴 ∈ (topGen‘𝐵)))
1812, 17impbid2 226 1 (𝐵𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝐴 = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  cin 3904  wss 3905  𝒫 cpw 4553   cuni 4861  dom cdm 5623  cfv 6486  topGenctg 17359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-topgen 17365
This theorem is referenced by:  tgval3  22866  tgtop  22876  eltop3  22879  tgidm  22883  bastop1  22896  tgrest  23062  tgcn  23155  txbasval  23509  opnmblALT  25520  mbfimaopnlem  25572  isfne3  36316  fneuni  36320  dissneqlem  37313  tgqioo2  45529
  Copyright terms: Public domain W3C validator