| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltg3 | Structured version Visualization version GIF version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| eltg3 | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6862 | . . . 4 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) | |
| 2 | inex1g 5259 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ∈ V) |
| 4 | eltg4i 22876 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) | |
| 5 | inss1 4186 | . . . . . 6 ⊢ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵 | |
| 6 | sseq1 3956 | . . . . . 6 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝑥 ⊆ 𝐵 ↔ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵)) | |
| 7 | 5, 6 | mpbiri 258 | . . . . 5 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝐵) |
| 8 | 7 | biantrurd 532 | . . . 4 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = ∪ 𝑥 ↔ (𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
| 9 | unieq 4869 | . . . . 5 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ∪ 𝑥 = ∪ (𝐵 ∩ 𝒫 𝐴)) | |
| 10 | 9 | eqeq2d 2744 | . . . 4 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = ∪ 𝑥 ↔ 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 11 | 8, 10 | bitr3d 281 | . . 3 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ((𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) ↔ 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴))) |
| 12 | 3, 4, 11 | spcedv 3549 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥)) |
| 13 | eltg3i 22877 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵) → ∪ 𝑥 ∈ (topGen‘𝐵)) | |
| 14 | eleq1 2821 | . . . . 5 ⊢ (𝐴 = ∪ 𝑥 → (𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝑥 ∈ (topGen‘𝐵))) | |
| 15 | 13, 14 | syl5ibrcom 247 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵) → (𝐴 = ∪ 𝑥 → 𝐴 ∈ (topGen‘𝐵))) |
| 16 | 15 | expimpd 453 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) → 𝐴 ∈ (topGen‘𝐵))) |
| 17 | 16 | exlimdv 1934 | . 2 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) → 𝐴 ∈ (topGen‘𝐵))) |
| 18 | 12, 17 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 dom cdm 5619 ‘cfv 6486 topGenctg 17343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-topgen 17349 |
| This theorem is referenced by: tgval3 22879 tgtop 22889 eltop3 22892 tgidm 22896 bastop1 22909 tgrest 23075 tgcn 23168 txbasval 23522 opnmblALT 25532 mbfimaopnlem 25584 isfne3 36408 fneuni 36412 dissneqlem 37405 tgqioo2 45671 |
| Copyright terms: Public domain | W3C validator |