![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltg3 | Structured version Visualization version GIF version |
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
eltg3 | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6465 | . . . 4 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) | |
2 | inex1g 5026 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐵 ∩ 𝒫 𝐴) ∈ V) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐵 ∩ 𝒫 𝐴) ∈ V) |
4 | eltg4i 21135 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) | |
5 | inss1 4057 | . . . . . . 7 ⊢ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵 | |
6 | sseq1 3851 | . . . . . . 7 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝑥 ⊆ 𝐵 ↔ (𝐵 ∩ 𝒫 𝐴) ⊆ 𝐵)) | |
7 | 5, 6 | mpbiri 250 | . . . . . 6 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝐵) |
8 | 7 | biantrurd 530 | . . . . 5 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = ∪ 𝑥 ↔ (𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
9 | unieq 4666 | . . . . . 6 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ∪ 𝑥 = ∪ (𝐵 ∩ 𝒫 𝐴)) | |
10 | 9 | eqeq2d 2835 | . . . . 5 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → (𝐴 = ∪ 𝑥 ↔ 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴))) |
11 | 8, 10 | bitr3d 273 | . . . 4 ⊢ (𝑥 = (𝐵 ∩ 𝒫 𝐴) → ((𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) ↔ 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴))) |
12 | 11 | spcegv 3511 | . . 3 ⊢ ((𝐵 ∩ 𝒫 𝐴) ∈ V → (𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
13 | 3, 4, 12 | sylc 65 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥)) |
14 | eltg3i 21136 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵) → ∪ 𝑥 ∈ (topGen‘𝐵)) | |
15 | eleq1 2894 | . . . . 5 ⊢ (𝐴 = ∪ 𝑥 → (𝐴 ∈ (topGen‘𝐵) ↔ ∪ 𝑥 ∈ (topGen‘𝐵))) | |
16 | 14, 15 | syl5ibrcom 239 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ⊆ 𝐵) → (𝐴 = ∪ 𝑥 → 𝐴 ∈ (topGen‘𝐵))) |
17 | 16 | expimpd 447 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) → 𝐴 ∈ (topGen‘𝐵))) |
18 | 17 | exlimdv 2034 | . 2 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥) → 𝐴 ∈ (topGen‘𝐵))) |
19 | 13, 18 | impbid2 218 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∃wex 1880 ∈ wcel 2166 Vcvv 3414 ∩ cin 3797 ⊆ wss 3798 𝒫 cpw 4378 ∪ cuni 4658 dom cdm 5342 ‘cfv 6123 topGenctg 16451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-iota 6086 df-fun 6125 df-fv 6131 df-topgen 16457 |
This theorem is referenced by: tgval3 21138 tgtop 21148 eltop3 21151 tgidm 21155 bastop1 21168 tgrest 21334 tgcn 21427 txbasval 21780 opnmblALT 23769 mbfimaopnlem 23821 isfne3 32876 fneuni 32880 dissneqlem 33733 tgqioo2 40569 |
Copyright terms: Public domain | W3C validator |