MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en0ALT Structured version   Visualization version   GIF version

Theorem en0ALT 9021
Description: Shorter proof of en0 9019, depending on ax-pow 5363 and ax-un 7729. (Contributed by NM, 27-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en0ALT (𝐴 ≈ ∅ ↔ 𝐴 = ∅)

Proof of Theorem en0ALT
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8955 . . 3 (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴1-1-onto→∅)
2 f1ocnv 6845 . . . . 5 (𝑓:𝐴1-1-onto→∅ → 𝑓:∅–1-1-onto𝐴)
3 f1o00 6868 . . . . . 6 (𝑓:∅–1-1-onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
43simprbi 496 . . . . 5 (𝑓:∅–1-1-onto𝐴𝐴 = ∅)
52, 4syl 17 . . . 4 (𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
65exlimiv 1932 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
71, 6sylbi 216 . 2 (𝐴 ≈ ∅ → 𝐴 = ∅)
8 0ex 5307 . . . 4 ∅ ∈ V
98enref 8987 . . 3 ∅ ≈ ∅
10 breq1 5151 . . 3 (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅))
119, 10mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 ≈ ∅)
127, 11impbii 208 1 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wex 1780  c0 4322   class class class wbr 5148  ccnv 5675  1-1-ontowf1o 6542  cen 8942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-en 8946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator