MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en0ALT Structured version   Visualization version   GIF version

Theorem en0ALT 9067
Description: Shorter proof of en0 9066, depending on ax-pow 5374 and ax-un 7761. (Contributed by NM, 27-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en0ALT (𝐴 ≈ ∅ ↔ 𝐴 = ∅)

Proof of Theorem en0ALT
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 9003 . . 3 (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴1-1-onto→∅)
2 f1ocnv 6868 . . . . 5 (𝑓:𝐴1-1-onto→∅ → 𝑓:∅–1-1-onto𝐴)
3 f1o00 6891 . . . . . 6 (𝑓:∅–1-1-onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
43simprbi 496 . . . . 5 (𝑓:∅–1-1-onto𝐴𝐴 = ∅)
52, 4syl 17 . . . 4 (𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
65exlimiv 1930 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
71, 6sylbi 217 . 2 (𝐴 ≈ ∅ → 𝐴 = ∅)
8 0ex 5316 . . . 4 ∅ ∈ V
98enref 9033 . . 3 ∅ ≈ ∅
10 breq1 5154 . . 3 (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅))
119, 10mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 ≈ ∅)
127, 11impbii 209 1 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wex 1778  c0 4342   class class class wbr 5151  ccnv 5692  1-1-ontowf1o 6568  cen 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-en 8994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator