![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqfnfv2d2 | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values, a deduction version. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
eqfnfv2d2.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
eqfnfv2d2.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
eqfnfv2d2.3 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqfnfv2d2.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
eqfnfv2d2 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv2d2.3 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqfnfv2d2.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
3 | 2 | ralrimiva 3138 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
4 | 1, 3 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
5 | eqfnfv2d2.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
6 | eqfnfv2d2.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
7 | 5, 6 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵)) |
8 | eqfnfv2 7023 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
10 | 4, 9 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 Fn wfn 6528 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-fv 6541 |
This theorem is referenced by: metakunt25 41468 |
Copyright terms: Public domain | W3C validator |