Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfnfv2d2 Structured version   Visualization version   GIF version

Theorem eqfnfv2d2 41969
Description: Equality of functions is determined by their values, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
eqfnfv2d2.1 (𝜑𝐹 Fn 𝐴)
eqfnfv2d2.2 (𝜑𝐺 Fn 𝐵)
eqfnfv2d2.3 (𝜑𝐴 = 𝐵)
eqfnfv2d2.4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
eqfnfv2d2 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eqfnfv2d2
StepHypRef Expression
1 eqfnfv2d2.3 . . 3 (𝜑𝐴 = 𝐵)
2 eqfnfv2d2.4 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
32ralrimiva 3125 . . 3 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
41, 3jca 511 . 2 (𝜑 → (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
5 eqfnfv2d2.1 . . . 4 (𝜑𝐹 Fn 𝐴)
6 eqfnfv2d2.2 . . . 4 (𝜑𝐺 Fn 𝐵)
75, 6jca 511 . . 3 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
8 eqfnfv2 7004 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
97, 8syl 17 . 2 (𝜑 → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
104, 9mpbird 257 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator