Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfnfv2d2 Structured version   Visualization version   GIF version

Theorem eqfnfv2d2 41924
Description: Equality of functions is determined by their values, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
eqfnfv2d2.1 (𝜑𝐹 Fn 𝐴)
eqfnfv2d2.2 (𝜑𝐺 Fn 𝐵)
eqfnfv2d2.3 (𝜑𝐴 = 𝐵)
eqfnfv2d2.4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
eqfnfv2d2 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eqfnfv2d2
StepHypRef Expression
1 eqfnfv2d2.3 . . 3 (𝜑𝐴 = 𝐵)
2 eqfnfv2d2.4 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
32ralrimiva 3142 . . 3 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
41, 3jca 511 . 2 (𝜑 → (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
5 eqfnfv2d2.1 . . . 4 (𝜑𝐹 Fn 𝐴)
6 eqfnfv2d2.2 . . . 4 (𝜑𝐺 Fn 𝐵)
75, 6jca 511 . . 3 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
8 eqfnfv2 7046 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
97, 8syl 17 . 2 (𝜑 → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
104, 9mpbird 257 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1535  wcel 2104  wral 3057   Fn wfn 6553  cfv 6558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-iota 6510  df-fun 6560  df-fn 6561  df-fv 6566
This theorem is referenced by:  metakunt25  42172
  Copyright terms: Public domain W3C validator