Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfnfv2d2 Structured version   Visualization version   GIF version

Theorem eqfnfv2d2 42147
Description: Equality of functions is determined by their values, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
eqfnfv2d2.1 (𝜑𝐹 Fn 𝐴)
eqfnfv2d2.2 (𝜑𝐺 Fn 𝐵)
eqfnfv2d2.3 (𝜑𝐴 = 𝐵)
eqfnfv2d2.4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
eqfnfv2d2 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eqfnfv2d2
StepHypRef Expression
1 eqfnfv2d2.3 . . 3 (𝜑𝐴 = 𝐵)
2 eqfnfv2d2.4 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
32ralrimiva 3125 . . 3 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
41, 3jca 511 . 2 (𝜑 → (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
5 eqfnfv2d2.1 . . . 4 (𝜑𝐹 Fn 𝐴)
6 eqfnfv2d2.2 . . . 4 (𝜑𝐺 Fn 𝐵)
75, 6jca 511 . . 3 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
8 eqfnfv2 6974 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
97, 8syl 17 . 2 (𝜑 → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
104, 9mpbird 257 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator