Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqfnfv2d2 | Structured version Visualization version GIF version |
Description: Equality of functions is determined by their values, a deduction version. (Contributed by metakunt, 28-May-2024.) |
Ref | Expression |
---|---|
eqfnfv2d2.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
eqfnfv2d2.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
eqfnfv2d2.3 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqfnfv2d2.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
eqfnfv2d2 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqfnfv2d2.3 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqfnfv2d2.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) | |
3 | 2 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |
4 | 1, 3 | jca 511 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
5 | eqfnfv2d2.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
6 | eqfnfv2d2.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
7 | 5, 6 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵)) |
8 | eqfnfv2 6892 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
10 | 4, 9 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹 = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: metakunt25 40077 |
Copyright terms: Public domain | W3C validator |