Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfnfv2d2 Structured version   Visualization version   GIF version

Theorem eqfnfv2d2 39918
Description: Equality of functions is determined by their values, a deduction version. (Contributed by metakunt, 28-May-2024.)
Hypotheses
Ref Expression
eqfnfv2d2.1 (𝜑𝐹 Fn 𝐴)
eqfnfv2d2.2 (𝜑𝐺 Fn 𝐵)
eqfnfv2d2.3 (𝜑𝐴 = 𝐵)
eqfnfv2d2.4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
eqfnfv2d2 (𝜑𝐹 = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem eqfnfv2d2
StepHypRef Expression
1 eqfnfv2d2.3 . . 3 (𝜑𝐴 = 𝐵)
2 eqfnfv2d2.4 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
32ralrimiva 3107 . . 3 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
41, 3jca 511 . 2 (𝜑 → (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
5 eqfnfv2d2.1 . . . 4 (𝜑𝐹 Fn 𝐴)
6 eqfnfv2d2.2 . . . 4 (𝜑𝐺 Fn 𝐵)
75, 6jca 511 . . 3 (𝜑 → (𝐹 Fn 𝐴𝐺 Fn 𝐵))
8 eqfnfv2 6892 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
97, 8syl 17 . 2 (𝜑 → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
104, 9mpbird 256 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  metakunt25  40077
  Copyright terms: Public domain W3C validator