Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplitnd Structured version   Visualization version   GIF version

Theorem fzsplitnd 41509
Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.)
Hypothesis
Ref Expression
fzsplitnd.1 (𝜑𝐾 ∈ (𝑀...𝑁))
Assertion
Ref Expression
fzsplitnd (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))

Proof of Theorem fzsplitnd
StepHypRef Expression
1 fzsplitnd.1 . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzuz 13529 . . . . 5 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
31, 2syl 17 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
41elfzelzd 13534 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
54zcnd 12697 . . . . . 6 (𝜑𝐾 ∈ ℂ)
6 1cnd 11239 . . . . . 6 (𝜑 → 1 ∈ ℂ)
75, 6npcand 11605 . . . . 5 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
87eleq1d 2810 . . . 4 (𝜑 → (((𝐾 − 1) + 1) ∈ (ℤ𝑀) ↔ 𝐾 ∈ (ℤ𝑀)))
93, 8mpbird 256 . . 3 (𝜑 → ((𝐾 − 1) + 1) ∈ (ℤ𝑀))
10 1zzd 12623 . . . . 5 (𝜑 → 1 ∈ ℤ)
114, 10zsubcld 12701 . . . 4 (𝜑 → (𝐾 − 1) ∈ ℤ)
12 elfzuz3 13530 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
131, 12syl 17 . . . . 5 (𝜑𝑁 ∈ (ℤ𝐾))
147fveq2d 6896 . . . . . 6 (𝜑 → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
1514eleq2d 2811 . . . . 5 (𝜑 → (𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)) ↔ 𝑁 ∈ (ℤ𝐾)))
1613, 15mpbird 256 . . . 4 (𝜑𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
17 peano2uzr 12917 . . . 4 (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝐾 − 1)))
1811, 16, 17syl2anc 582 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝐾 − 1)))
19 fzsplit2 13558 . . 3 ((((𝐾 − 1) + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐾 − 1))) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)))
209, 18, 19syl2anc 582 . 2 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)))
217oveq1d 7431 . . 3 (𝜑 → (((𝐾 − 1) + 1)...𝑁) = (𝐾...𝑁))
2221uneq2d 4156 . 2 (𝜑 → ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
2320, 22eqtrd 2765 1 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cun 3937  cfv 6543  (class class class)co 7416  1c1 11139   + caddc 11141  cmin 11474  cz 12588  cuz 12852  ...cfz 13516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517
This theorem is referenced by:  fzsplitnr  41510  metakunt24  41736
  Copyright terms: Public domain W3C validator