Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplitnd Structured version   Visualization version   GIF version

Theorem fzsplitnd 41925
Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.)
Hypothesis
Ref Expression
fzsplitnd.1 (𝜑𝐾 ∈ (𝑀...𝑁))
Assertion
Ref Expression
fzsplitnd (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))

Proof of Theorem fzsplitnd
StepHypRef Expression
1 fzsplitnd.1 . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzuz 13550 . . . . 5 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
31, 2syl 17 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
41elfzelzd 13555 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
54zcnd 12714 . . . . . 6 (𝜑𝐾 ∈ ℂ)
6 1cnd 11247 . . . . . 6 (𝜑 → 1 ∈ ℂ)
75, 6npcand 11615 . . . . 5 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
87eleq1d 2822 . . . 4 (𝜑 → (((𝐾 − 1) + 1) ∈ (ℤ𝑀) ↔ 𝐾 ∈ (ℤ𝑀)))
93, 8mpbird 257 . . 3 (𝜑 → ((𝐾 − 1) + 1) ∈ (ℤ𝑀))
10 1zzd 12639 . . . . 5 (𝜑 → 1 ∈ ℤ)
114, 10zsubcld 12718 . . . 4 (𝜑 → (𝐾 − 1) ∈ ℤ)
12 elfzuz3 13551 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
131, 12syl 17 . . . . 5 (𝜑𝑁 ∈ (ℤ𝐾))
147fveq2d 6905 . . . . . 6 (𝜑 → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
1514eleq2d 2823 . . . . 5 (𝜑 → (𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)) ↔ 𝑁 ∈ (ℤ𝐾)))
1613, 15mpbird 257 . . . 4 (𝜑𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
17 peano2uzr 12936 . . . 4 (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝐾 − 1)))
1811, 16, 17syl2anc 583 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝐾 − 1)))
19 fzsplit2 13579 . . 3 ((((𝐾 − 1) + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐾 − 1))) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)))
209, 18, 19syl2anc 583 . 2 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)))
217oveq1d 7440 . . 3 (𝜑 → (((𝐾 − 1) + 1)...𝑁) = (𝐾...𝑁))
2221uneq2d 4178 . 2 (𝜑 → ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
2320, 22eqtrd 2773 1 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1535  wcel 2104  cun 3961  cfv 6558  (class class class)co 7425  1c1 11147   + caddc 11149  cmin 11483  cz 12604  cuz 12869  ...cfz 13537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6317  df-ord 6383  df-on 6384  df-lim 6385  df-suc 6386  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7381  df-ov 7428  df-oprab 7429  df-mpo 7430  df-om 7881  df-1st 8007  df-2nd 8008  df-frecs 8299  df-wrecs 8330  df-recs 8404  df-rdg 8443  df-er 8738  df-en 8979  df-dom 8980  df-sdom 8981  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11485  df-neg 11486  df-nn 12258  df-n0 12518  df-z 12605  df-uz 12870  df-fz 13538
This theorem is referenced by:  fzsplitnr  41926  metakunt24  42171
  Copyright terms: Public domain W3C validator