Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplitnd Structured version   Visualization version   GIF version

Theorem fzsplitnd 41958
Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.)
Hypothesis
Ref Expression
fzsplitnd.1 (𝜑𝐾 ∈ (𝑀...𝑁))
Assertion
Ref Expression
fzsplitnd (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))

Proof of Theorem fzsplitnd
StepHypRef Expression
1 fzsplitnd.1 . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzuz 13542 . . . . 5 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
31, 2syl 17 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
41elfzelzd 13547 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
54zcnd 12706 . . . . . 6 (𝜑𝐾 ∈ ℂ)
6 1cnd 11238 . . . . . 6 (𝜑 → 1 ∈ ℂ)
75, 6npcand 11606 . . . . 5 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
87eleq1d 2818 . . . 4 (𝜑 → (((𝐾 − 1) + 1) ∈ (ℤ𝑀) ↔ 𝐾 ∈ (ℤ𝑀)))
93, 8mpbird 257 . . 3 (𝜑 → ((𝐾 − 1) + 1) ∈ (ℤ𝑀))
10 1zzd 12631 . . . . 5 (𝜑 → 1 ∈ ℤ)
114, 10zsubcld 12710 . . . 4 (𝜑 → (𝐾 − 1) ∈ ℤ)
12 elfzuz3 13543 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
131, 12syl 17 . . . . 5 (𝜑𝑁 ∈ (ℤ𝐾))
147fveq2d 6890 . . . . . 6 (𝜑 → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
1514eleq2d 2819 . . . . 5 (𝜑 → (𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)) ↔ 𝑁 ∈ (ℤ𝐾)))
1613, 15mpbird 257 . . . 4 (𝜑𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
17 peano2uzr 12927 . . . 4 (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝐾 − 1)))
1811, 16, 17syl2anc 584 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝐾 − 1)))
19 fzsplit2 13571 . . 3 ((((𝐾 − 1) + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐾 − 1))) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)))
209, 18, 19syl2anc 584 . 2 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)))
217oveq1d 7428 . . 3 (𝜑 → (((𝐾 − 1) + 1)...𝑁) = (𝐾...𝑁))
2221uneq2d 4148 . 2 (𝜑 → ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
2320, 22eqtrd 2769 1 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cun 3929  cfv 6541  (class class class)co 7413  1c1 11138   + caddc 11140  cmin 11474  cz 12596  cuz 12860  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530
This theorem is referenced by:  fzsplitnr  41959  metakunt24  42204
  Copyright terms: Public domain W3C validator