| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fzsplitnd | Structured version Visualization version GIF version | ||
| Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.) |
| Ref | Expression |
|---|---|
| fzsplitnd.1 | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| Ref | Expression |
|---|---|
| fzsplitnd | ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzsplitnd.1 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
| 2 | elfzuz 13417 | . . . . 5 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 4 | 1 | elfzelzd 13422 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 5 | 4 | zcnd 12575 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 6 | 1cnd 11104 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 7 | 5, 6 | npcand 11473 | . . . . 5 ⊢ (𝜑 → ((𝐾 − 1) + 1) = 𝐾) |
| 8 | 7 | eleq1d 2816 | . . . 4 ⊢ (𝜑 → (((𝐾 − 1) + 1) ∈ (ℤ≥‘𝑀) ↔ 𝐾 ∈ (ℤ≥‘𝑀))) |
| 9 | 3, 8 | mpbird 257 | . . 3 ⊢ (𝜑 → ((𝐾 − 1) + 1) ∈ (ℤ≥‘𝑀)) |
| 10 | 1zzd 12500 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 11 | 4, 10 | zsubcld 12579 | . . . 4 ⊢ (𝜑 → (𝐾 − 1) ∈ ℤ) |
| 12 | elfzuz3 13418 | . . . . . 6 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 13 | 1, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 14 | 7 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘((𝐾 − 1) + 1)) = (ℤ≥‘𝐾)) |
| 15 | 14 | eleq2d 2817 | . . . . 5 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1)) ↔ 𝑁 ∈ (ℤ≥‘𝐾))) |
| 16 | 13, 15 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) |
| 17 | peano2uzr 12798 | . . . 4 ⊢ (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) | |
| 18 | 11, 16, 17 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) |
| 19 | fzsplit2 13446 | . . 3 ⊢ ((((𝐾 − 1) + 1) ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘(𝐾 − 1))) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁))) | |
| 20 | 9, 18, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁))) |
| 21 | 7 | oveq1d 7361 | . . 3 ⊢ (𝜑 → (((𝐾 − 1) + 1)...𝑁) = (𝐾...𝑁)) |
| 22 | 21 | uneq2d 4118 | . 2 ⊢ (𝜑 → ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))) |
| 23 | 20, 22 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 ‘cfv 6481 (class class class)co 7346 1c1 11004 + caddc 11006 − cmin 11341 ℤcz 12465 ℤ≥cuz 12729 ...cfz 13404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 |
| This theorem is referenced by: fzsplitnr 42015 |
| Copyright terms: Public domain | W3C validator |