Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzsplitnd Structured version   Visualization version   GIF version

Theorem fzsplitnd 41167
Description: Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.)
Hypothesis
Ref Expression
fzsplitnd.1 (𝜑𝐾 ∈ (𝑀...𝑁))
Assertion
Ref Expression
fzsplitnd (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))

Proof of Theorem fzsplitnd
StepHypRef Expression
1 fzsplitnd.1 . . . . 5 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzuz 13504 . . . . 5 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
31, 2syl 17 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
41elfzelzd 13509 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
54zcnd 12674 . . . . . 6 (𝜑𝐾 ∈ ℂ)
6 1cnd 11216 . . . . . 6 (𝜑 → 1 ∈ ℂ)
75, 6npcand 11582 . . . . 5 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
87eleq1d 2817 . . . 4 (𝜑 → (((𝐾 − 1) + 1) ∈ (ℤ𝑀) ↔ 𝐾 ∈ (ℤ𝑀)))
93, 8mpbird 257 . . 3 (𝜑 → ((𝐾 − 1) + 1) ∈ (ℤ𝑀))
10 1zzd 12600 . . . . 5 (𝜑 → 1 ∈ ℤ)
114, 10zsubcld 12678 . . . 4 (𝜑 → (𝐾 − 1) ∈ ℤ)
12 elfzuz3 13505 . . . . . 6 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
131, 12syl 17 . . . . 5 (𝜑𝑁 ∈ (ℤ𝐾))
147fveq2d 6895 . . . . . 6 (𝜑 → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
1514eleq2d 2818 . . . . 5 (𝜑 → (𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)) ↔ 𝑁 ∈ (ℤ𝐾)))
1613, 15mpbird 257 . . . 4 (𝜑𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
17 peano2uzr 12894 . . . 4 (((𝐾 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → 𝑁 ∈ (ℤ‘(𝐾 − 1)))
1811, 16, 17syl2anc 583 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝐾 − 1)))
19 fzsplit2 13533 . . 3 ((((𝐾 − 1) + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝐾 − 1))) → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)))
209, 18, 19syl2anc 583 . 2 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)))
217oveq1d 7427 . . 3 (𝜑 → (((𝐾 − 1) + 1)...𝑁) = (𝐾...𝑁))
2221uneq2d 4163 . 2 (𝜑 → ((𝑀...(𝐾 − 1)) ∪ (((𝐾 − 1) + 1)...𝑁)) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
2320, 22eqtrd 2771 1 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cun 3946  cfv 6543  (class class class)co 7412  1c1 11117   + caddc 11119  cmin 11451  cz 12565  cuz 12829  ...cfz 13491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492
This theorem is referenced by:  fzsplitnr  41168  metakunt24  41327
  Copyright terms: Public domain W3C validator