Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzne2d | Structured version Visualization version GIF version |
Description: Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024.) |
Ref | Expression |
---|---|
fzne2d.1 | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
fzne2d.2 | ⊢ (𝜑 → 𝐾 ≠ 𝑁) |
Ref | Expression |
---|---|
fzne2d | ⊢ (𝜑 → 𝐾 < 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzne2d.2 | . . 3 ⊢ (𝜑 → 𝐾 ≠ 𝑁) | |
2 | 1 | necomd 2999 | . 2 ⊢ (𝜑 → 𝑁 ≠ 𝐾) |
3 | fzne2d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
4 | elfz2 13246 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
5 | 3, 4 | sylib 217 | . . . . . 6 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
6 | 5 | simpld 495 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
7 | 6 | simp3d 1143 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
8 | 7 | zred 12426 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
9 | 6 | simp2d 1142 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
10 | 9 | zred 12426 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
11 | 5 | simprrd 771 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑁) |
12 | 8, 10, 11 | leltned 11128 | . 2 ⊢ (𝜑 → (𝐾 < 𝑁 ↔ 𝑁 ≠ 𝐾)) |
13 | 2, 12 | mpbird 256 | 1 ⊢ (𝜑 → 𝐾 < 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 (class class class)co 7275 < clt 11009 ≤ cle 11010 ℤcz 12319 ...cfz 13239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-neg 11208 df-z 12320 df-fz 13240 |
This theorem is referenced by: metakunt2 40126 |
Copyright terms: Public domain | W3C validator |