![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzne2d | Structured version Visualization version GIF version |
Description: Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024.) |
Ref | Expression |
---|---|
fzne2d.1 | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
fzne2d.2 | ⊢ (𝜑 → 𝐾 ≠ 𝑁) |
Ref | Expression |
---|---|
fzne2d | ⊢ (𝜑 → 𝐾 < 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzne2d.2 | . . 3 ⊢ (𝜑 → 𝐾 ≠ 𝑁) | |
2 | 1 | necomd 3002 | . 2 ⊢ (𝜑 → 𝑁 ≠ 𝐾) |
3 | fzne2d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
4 | elfz2 13574 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
5 | 3, 4 | sylib 218 | . . . . . 6 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
6 | 5 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
7 | 6 | simp3d 1144 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
8 | 7 | zred 12747 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
9 | 6 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
10 | 9 | zred 12747 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
11 | 5 | simprrd 773 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑁) |
12 | 8, 10, 11 | leltned 11443 | . 2 ⊢ (𝜑 → (𝐾 < 𝑁 ↔ 𝑁 ≠ 𝐾)) |
13 | 2, 12 | mpbird 257 | 1 ⊢ (𝜑 → 𝐾 < 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 (class class class)co 7448 < clt 11324 ≤ cle 11325 ℤcz 12639 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-neg 11523 df-z 12640 df-fz 13568 |
This theorem is referenced by: metakunt2 42163 |
Copyright terms: Public domain | W3C validator |