Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzne2d | Structured version Visualization version GIF version |
Description: Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024.) |
Ref | Expression |
---|---|
fzne2d.1 | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
fzne2d.2 | ⊢ (𝜑 → 𝐾 ≠ 𝑁) |
Ref | Expression |
---|---|
fzne2d | ⊢ (𝜑 → 𝐾 < 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzne2d.2 | . . 3 ⊢ (𝜑 → 𝐾 ≠ 𝑁) | |
2 | 1 | necomd 2996 | . 2 ⊢ (𝜑 → 𝑁 ≠ 𝐾) |
3 | fzne2d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
4 | elfz2 13339 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
5 | 3, 4 | sylib 217 | . . . . . 6 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
6 | 5 | simpld 495 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
7 | 6 | simp3d 1143 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
8 | 7 | zred 12519 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
9 | 6 | simp2d 1142 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
10 | 9 | zred 12519 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
11 | 5 | simprrd 771 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑁) |
12 | 8, 10, 11 | leltned 11221 | . 2 ⊢ (𝜑 → (𝐾 < 𝑁 ↔ 𝑁 ≠ 𝐾)) |
13 | 2, 12 | mpbird 256 | 1 ⊢ (𝜑 → 𝐾 < 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5089 (class class class)co 7329 < clt 11102 ≤ cle 11103 ℤcz 12412 ...cfz 13332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-pre-lttri 11038 ax-pre-lttrn 11039 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-neg 11301 df-z 12413 df-fz 13333 |
This theorem is referenced by: metakunt2 40376 |
Copyright terms: Public domain | W3C validator |