| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fzne2d | Structured version Visualization version GIF version | ||
| Description: Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024.) |
| Ref | Expression |
|---|---|
| fzne2d.1 | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| fzne2d.2 | ⊢ (𝜑 → 𝐾 ≠ 𝑁) |
| Ref | Expression |
|---|---|
| fzne2d | ⊢ (𝜑 → 𝐾 < 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzne2d.2 | . . 3 ⊢ (𝜑 → 𝐾 ≠ 𝑁) | |
| 2 | 1 | necomd 2988 | . 2 ⊢ (𝜑 → 𝑁 ≠ 𝐾) |
| 3 | fzne2d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
| 4 | elfz2 13536 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 5 | 3, 4 | sylib 218 | . . . . . 6 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 6 | 5 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
| 7 | 6 | simp3d 1144 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 8 | 7 | zred 12702 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 9 | 6 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 10 | 9 | zred 12702 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 11 | 5 | simprrd 773 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑁) |
| 12 | 8, 10, 11 | leltned 11393 | . 2 ⊢ (𝜑 → (𝐾 < 𝑁 ↔ 𝑁 ≠ 𝐾)) |
| 13 | 2, 12 | mpbird 257 | 1 ⊢ (𝜑 → 𝐾 < 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 (class class class)co 7410 < clt 11274 ≤ cle 11275 ℤcz 12593 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-neg 11474 df-z 12594 df-fz 13530 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |