Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzne2d Structured version   Visualization version   GIF version

Theorem fzne2d 39917
Description: Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
fzne2d.1 (𝜑𝐾 ∈ (𝑀...𝑁))
fzne2d.2 (𝜑𝐾𝑁)
Assertion
Ref Expression
fzne2d (𝜑𝐾 < 𝑁)

Proof of Theorem fzne2d
StepHypRef Expression
1 fzne2d.2 . . 3 (𝜑𝐾𝑁)
21necomd 2998 . 2 (𝜑𝑁𝐾)
3 fzne2d.1 . . . . . . 7 (𝜑𝐾 ∈ (𝑀...𝑁))
4 elfz2 13175 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
53, 4sylib 217 . . . . . 6 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
65simpld 494 . . . . 5 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
76simp3d 1142 . . . 4 (𝜑𝐾 ∈ ℤ)
87zred 12355 . . 3 (𝜑𝐾 ∈ ℝ)
96simp2d 1141 . . . 4 (𝜑𝑁 ∈ ℤ)
109zred 12355 . . 3 (𝜑𝑁 ∈ ℝ)
115simprrd 770 . . 3 (𝜑𝐾𝑁)
128, 10, 11leltned 11058 . 2 (𝜑 → (𝐾 < 𝑁𝑁𝐾))
132, 12mpbird 256 1 (𝜑𝐾 < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255   < clt 10940  cle 10941  cz 12249  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-neg 11138  df-z 12250  df-fz 13169
This theorem is referenced by:  metakunt2  40054
  Copyright terms: Public domain W3C validator