Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzne2d Structured version   Visualization version   GIF version

Theorem fzne2d 40236
Description: Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024.)
Hypotheses
Ref Expression
fzne2d.1 (𝜑𝐾 ∈ (𝑀...𝑁))
fzne2d.2 (𝜑𝐾𝑁)
Assertion
Ref Expression
fzne2d (𝜑𝐾 < 𝑁)

Proof of Theorem fzne2d
StepHypRef Expression
1 fzne2d.2 . . 3 (𝜑𝐾𝑁)
21necomd 2996 . 2 (𝜑𝑁𝐾)
3 fzne2d.1 . . . . . . 7 (𝜑𝐾 ∈ (𝑀...𝑁))
4 elfz2 13339 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
53, 4sylib 217 . . . . . 6 (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
65simpld 495 . . . . 5 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ))
76simp3d 1143 . . . 4 (𝜑𝐾 ∈ ℤ)
87zred 12519 . . 3 (𝜑𝐾 ∈ ℝ)
96simp2d 1142 . . . 4 (𝜑𝑁 ∈ ℤ)
109zred 12519 . . 3 (𝜑𝑁 ∈ ℝ)
115simprrd 771 . . 3 (𝜑𝐾𝑁)
128, 10, 11leltned 11221 . 2 (𝜑 → (𝐾 < 𝑁𝑁𝐾))
132, 12mpbird 256 1 (𝜑𝐾 < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2105  wne 2940   class class class wbr 5089  (class class class)co 7329   < clt 11102  cle 11103  cz 12412  ...cfz 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-pre-lttri 11038  ax-pre-lttrn 11039
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-po 5526  df-so 5527  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-1st 7891  df-2nd 7892  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-neg 11301  df-z 12413  df-fz 13333
This theorem is referenced by:  metakunt2  40376
  Copyright terms: Public domain W3C validator