| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fzne2d | Structured version Visualization version GIF version | ||
| Description: Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024.) |
| Ref | Expression |
|---|---|
| fzne2d.1 | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| fzne2d.2 | ⊢ (𝜑 → 𝐾 ≠ 𝑁) |
| Ref | Expression |
|---|---|
| fzne2d | ⊢ (𝜑 → 𝐾 < 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzne2d.2 | . . 3 ⊢ (𝜑 → 𝐾 ≠ 𝑁) | |
| 2 | 1 | necomd 2980 | . 2 ⊢ (𝜑 → 𝑁 ≠ 𝐾) |
| 3 | fzne2d.1 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) | |
| 4 | elfz2 13475 | . . . . . . 7 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
| 5 | 3, 4 | sylib 218 | . . . . . 6 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
| 6 | 5 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
| 7 | 6 | simp3d 1144 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 8 | 7 | zred 12638 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 9 | 6 | simp2d 1143 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 10 | 9 | zred 12638 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 11 | 5 | simprrd 773 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑁) |
| 12 | 8, 10, 11 | leltned 11327 | . 2 ⊢ (𝜑 → (𝐾 < 𝑁 ↔ 𝑁 ≠ 𝐾)) |
| 13 | 2, 12 | mpbird 257 | 1 ⊢ (𝜑 → 𝐾 < 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 (class class class)co 7387 < clt 11208 ≤ cle 11209 ℤcz 12529 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-fz 13469 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |