Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erim | Structured version Visualization version GIF version |
Description: Equivalence relation on its natural domain implies that the class of coelements on the domain is equal to the relation (this is the most convenient form of prter3 36896 and erim2 36789). (Contributed by Peter Mazsa, 7-Oct-2021.) (Revised by Peter Mazsa, 29-Dec-2021.) |
Ref | Expression |
---|---|
erim | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dferALTV2 36780 | . 2 ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴)) | |
2 | erim2 36789 | . 2 ⊢ (𝑅 ∈ 𝑉 → (( EqvRel 𝑅 ∧ (dom 𝑅 / 𝑅) = 𝐴) → ∼ 𝐴 = 𝑅)) | |
3 | 1, 2 | syl5bi 241 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ErALTV 𝐴 → ∼ 𝐴 = 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 dom cdm 5589 / cqs 8497 ∼ ccoels 36334 EqvRel weqvrel 36350 ErALTV werALTV 36359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-id 5489 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-qs 8504 df-coss 36537 df-coels 36538 df-refrel 36630 df-symrel 36658 df-trrel 36688 df-eqvrel 36698 df-dmqs 36752 df-erALTV 36776 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |