Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem6 Structured version   Visualization version   GIF version

Theorem cycpmco2lem6 30777
 Description: Lemma for cycpmco2 30779. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
cycpmco2lem.1 (𝜑𝐾 ∈ ran 𝑊)
cycpmco2lem6.2 (𝜑𝐾𝐼)
cycpmco2lem6.1 (𝜑 → (𝑈𝐾) ∈ (𝐸..^((♯‘𝑈) − 1)))
Assertion
Ref Expression
cycpmco2lem6 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))

Proof of Theorem cycpmco2lem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.c . . . 4 𝑀 = (toCyc‘𝐷)
2 cycpmco2.d . . . 4 (𝜑𝐷𝑉)
3 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
4 ssrab2 4059 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
5 cycpmco2.w . . . . . . . 8 (𝜑𝑊 ∈ dom 𝑀)
6 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
7 eqid 2824 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
81, 6, 7tocycf 30763 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
92, 8syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
109fdmd 6526 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
115, 10eleqtrd 2918 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
124, 11sseldi 3968 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
13 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
1413eldifad 3951 . . . . . . 7 (𝜑𝐼𝐷)
1514s1cld 13960 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
16 splcl 14117 . . . . . 6 ((𝑊 ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
1712, 15, 16syl2anc 586 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
183, 17eqeltrid 2920 . . . 4 (𝜑𝑈 ∈ Word 𝐷)
19 cycpmco2.j . . . . 5 (𝜑𝐽 ∈ ran 𝑊)
20 cycpmco2.e . . . . 5 𝐸 = ((𝑊𝐽) + 1)
211, 6, 2, 5, 13, 19, 20, 3cycpmco2f1 30770 . . . 4 (𝜑𝑈:dom 𝑈1-1𝐷)
22 fz0ssnn0 13005 . . . . . . . 8 (0...(♯‘𝑊)) ⊆ ℕ0
23 id 22 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊𝑤 = 𝑊)
24 dmeq 5775 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
25 eqidd 2825 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊𝐷 = 𝐷)
2623, 24, 25f1eq123d 6611 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
2726elrab 3683 . . . . . . . . . . . . . . 15 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2811, 27sylib 220 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2928simprd 498 . . . . . . . . . . . . 13 (𝜑𝑊:dom 𝑊1-1𝐷)
30 f1cnv 6641 . . . . . . . . . . . . 13 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
31 f1of 6618 . . . . . . . . . . . . 13 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3229, 30, 313syl 18 . . . . . . . . . . . 12 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
3332, 19ffvelrnd 6855 . . . . . . . . . . 11 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
34 wrddm 13871 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
3512, 34syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3633, 35eleqtrd 2918 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
37 fzofzp1 13137 . . . . . . . . . 10 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3836, 37syl 17 . . . . . . . . 9 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3920, 38eqeltrid 2920 . . . . . . . 8 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
4022, 39sseldi 3968 . . . . . . 7 (𝜑𝐸 ∈ ℕ0)
41 nn0uz 12283 . . . . . . 7 0 = (ℤ‘0)
4240, 41eleqtrdi 2926 . . . . . 6 (𝜑𝐸 ∈ (ℤ‘0))
43 fzoss1 13067 . . . . . 6 (𝐸 ∈ (ℤ‘0) → (𝐸..^((♯‘𝑈) − 1)) ⊆ (0..^((♯‘𝑈) − 1)))
4442, 43syl 17 . . . . 5 (𝜑 → (𝐸..^((♯‘𝑈) − 1)) ⊆ (0..^((♯‘𝑈) − 1)))
45 cycpmco2lem6.1 . . . . 5 (𝜑 → (𝑈𝐾) ∈ (𝐸..^((♯‘𝑈) − 1)))
4644, 45sseldd 3971 . . . 4 (𝜑 → (𝑈𝐾) ∈ (0..^((♯‘𝑈) − 1)))
471, 2, 18, 21, 46cycpmfv1 30759 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = (𝑈‘((𝑈𝐾) + 1)))
48 cycpmco2lem.1 . . . . 5 (𝜑𝐾 ∈ ran 𝑊)
49 f1f1orn 6629 . . . . . . 7 (𝑈:dom 𝑈1-1𝐷𝑈:dom 𝑈1-1-onto→ran 𝑈)
5021, 49syl 17 . . . . . 6 (𝜑𝑈:dom 𝑈1-1-onto→ran 𝑈)
51 ssun1 4151 . . . . . . . 8 ran 𝑊 ⊆ (ran 𝑊 ∪ {𝐼})
521, 6, 2, 5, 13, 19, 20, 3cycpmco2rn 30771 . . . . . . . 8 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
5351, 52sseqtrrid 4023 . . . . . . 7 (𝜑 → ran 𝑊 ⊆ ran 𝑈)
5453sselda 3970 . . . . . 6 ((𝜑𝐾 ∈ ran 𝑊) → 𝐾 ∈ ran 𝑈)
55 f1ocnvfv2 7037 . . . . . 6 ((𝑈:dom 𝑈1-1-onto→ran 𝑈𝐾 ∈ ran 𝑈) → (𝑈‘(𝑈𝐾)) = 𝐾)
5650, 54, 55syl2an2r 683 . . . . 5 ((𝜑𝐾 ∈ ran 𝑊) → (𝑈‘(𝑈𝐾)) = 𝐾)
5748, 56mpdan 685 . . . 4 (𝜑 → (𝑈‘(𝑈𝐾)) = 𝐾)
5857fveq2d 6677 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = ((𝑀𝑈)‘𝐾))
593a1i 11 . . . 4 (𝜑𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩))
60 fzossz 13060 . . . . . . . 8 (𝐸..^((♯‘𝑈) − 1)) ⊆ ℤ
6160, 45sseldi 3968 . . . . . . 7 (𝜑 → (𝑈𝐾) ∈ ℤ)
6261zcnd 12091 . . . . . 6 (𝜑 → (𝑈𝐾) ∈ ℂ)
6340nn0cnd 11960 . . . . . 6 (𝜑𝐸 ∈ ℂ)
64 1cnd 10639 . . . . . 6 (𝜑 → 1 ∈ ℂ)
6562, 63, 64nppcan3d 11027 . . . . 5 (𝜑 → (((𝑈𝐾) − 𝐸) + (1 + 𝐸)) = ((𝑈𝐾) + 1))
6665eqcomd 2830 . . . 4 (𝜑 → ((𝑈𝐾) + 1) = (((𝑈𝐾) − 𝐸) + (1 + 𝐸)))
6759, 66fveq12d 6680 . . 3 (𝜑 → (𝑈‘((𝑈𝐾) + 1)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(((𝑈𝐾) − 𝐸) + (1 + 𝐸))))
6847, 58, 673eqtr3d 2867 . 2 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(((𝑈𝐾) − 𝐸) + (1 + 𝐸))))
6962, 63npcand 11004 . . . 4 (𝜑 → (((𝑈𝐾) − 𝐸) + 𝐸) = (𝑈𝐾))
7069fveq2d 6677 . . 3 (𝜑 → (𝑊‘(((𝑈𝐾) − 𝐸) + 𝐸)) = (𝑊‘(𝑈𝐾)))
71 nn0fz0 13008 . . . . 5 (𝐸 ∈ ℕ0𝐸 ∈ (0...𝐸))
7240, 71sylib 220 . . . 4 (𝜑𝐸 ∈ (0...𝐸))
73 lencl 13886 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
7412, 73syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ ℕ0)
7574nn0cnd 11960 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℂ)
76 ovexd 7194 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
7720, 76eqeltrid 2920 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ V)
78 splval 14116 . . . . . . . . . . . . . . 15 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
795, 77, 77, 15, 78syl13anc 1368 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
803, 79syl5eq 2871 . . . . . . . . . . . . 13 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
8180fveq2d 6677 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑈) = (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
82 pfxcl 14042 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
8312, 82syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
84 ccatcl 13929 . . . . . . . . . . . . . 14 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
8583, 15, 84syl2anc 586 . . . . . . . . . . . . 13 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
86 swrdcl 14010 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
8712, 86syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
88 ccatlen 13930 . . . . . . . . . . . . 13 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
8985, 87, 88syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
90 ccatws1len 13977 . . . . . . . . . . . . . . 15 ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
9112, 82, 903syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
92 pfxlen 14048 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
9312, 39, 92syl2anc 586 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
9493oveq1d 7174 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1))
9591, 94eqtrd 2859 . . . . . . . . . . . . 13 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = (𝐸 + 1))
96 nn0fz0 13008 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
9774, 96sylib 220 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
98 swrdlen 14012 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
9912, 39, 97, 98syl3anc 1367 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
10095, 99oveq12d 7177 . . . . . . . . . . . 12 (𝜑 → ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
10181, 89, 1003eqtrd 2863 . . . . . . . . . . 11 (𝜑 → (♯‘𝑈) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
10240nn0zd 12088 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℤ)
103102peano2zd 12093 . . . . . . . . . . . . 13 (𝜑 → (𝐸 + 1) ∈ ℤ)
104103zcnd 12091 . . . . . . . . . . . 12 (𝜑 → (𝐸 + 1) ∈ ℂ)
105104, 75, 63addsubassd 11020 . . . . . . . . . . 11 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
10663, 64, 75addassd 10666 . . . . . . . . . . . 12 (𝜑 → ((𝐸 + 1) + (♯‘𝑊)) = (𝐸 + (1 + (♯‘𝑊))))
107106oveq1d 7174 . . . . . . . . . . 11 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
108101, 105, 1073eqtr2d 2865 . . . . . . . . . 10 (𝜑 → (♯‘𝑈) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
10964, 75addcld 10663 . . . . . . . . . . 11 (𝜑 → (1 + (♯‘𝑊)) ∈ ℂ)
11063, 109pncan2d 11002 . . . . . . . . . 10 (𝜑 → ((𝐸 + (1 + (♯‘𝑊))) − 𝐸) = (1 + (♯‘𝑊)))
11164, 75addcomd 10845 . . . . . . . . . 10 (𝜑 → (1 + (♯‘𝑊)) = ((♯‘𝑊) + 1))
112108, 110, 1113eqtrd 2863 . . . . . . . . 9 (𝜑 → (♯‘𝑈) = ((♯‘𝑊) + 1))
11375, 64, 112mvrraddd 11055 . . . . . . . 8 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
114113oveq2d 7175 . . . . . . 7 (𝜑 → (𝐸..^((♯‘𝑈) − 1)) = (𝐸..^(♯‘𝑊)))
11545, 114eleqtrd 2918 . . . . . 6 (𝜑 → (𝑈𝐾) ∈ (𝐸..^(♯‘𝑊)))
116 fzosubel 13099 . . . . . 6 (((𝑈𝐾) ∈ (𝐸..^(♯‘𝑊)) ∧ 𝐸 ∈ ℤ) → ((𝑈𝐾) − 𝐸) ∈ ((𝐸𝐸)..^((♯‘𝑊) − 𝐸)))
117115, 102, 116syl2anc 586 . . . . 5 (𝜑 → ((𝑈𝐾) − 𝐸) ∈ ((𝐸𝐸)..^((♯‘𝑊) − 𝐸)))
11863subidd 10988 . . . . . 6 (𝜑 → (𝐸𝐸) = 0)
119118oveq1d 7174 . . . . 5 (𝜑 → ((𝐸𝐸)..^((♯‘𝑊) − 𝐸)) = (0..^((♯‘𝑊) − 𝐸)))
120117, 119eleqtrd 2918 . . . 4 (𝜑 → ((𝑈𝐾) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸)))
12164, 63addcomd 10845 . . . . 5 (𝜑 → (1 + 𝐸) = (𝐸 + 1))
122 s1len 13963 . . . . . 6 (♯‘⟨“𝐼”⟩) = 1
123122oveq2i 7170 . . . . 5 (𝐸 + (♯‘⟨“𝐼”⟩)) = (𝐸 + 1)
124121, 123syl6eqr 2877 . . . 4 (𝜑 → (1 + 𝐸) = (𝐸 + (♯‘⟨“𝐼”⟩)))
12512, 72, 39, 15, 120, 124splfv3 30636 . . 3 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(((𝑈𝐾) − 𝐸) + (1 + 𝐸))) = (𝑊‘(((𝑈𝐾) − 𝐸) + 𝐸)))
126113oveq1d 7174 . . . . . . . 8 (𝜑 → (((♯‘𝑈) − 1) − 1) = ((♯‘𝑊) − 1))
127126oveq2d 7175 . . . . . . 7 (𝜑 → (𝐸..^(((♯‘𝑈) − 1) − 1)) = (𝐸..^((♯‘𝑊) − 1)))
128 fzoss1 13067 . . . . . . . 8 (𝐸 ∈ (ℤ‘0) → (𝐸..^((♯‘𝑊) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
12942, 128syl 17 . . . . . . 7 (𝜑 → (𝐸..^((♯‘𝑊) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
130127, 129eqsstrd 4008 . . . . . 6 (𝜑 → (𝐸..^(((♯‘𝑈) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
131 f1ocnvdm 7044 . . . . . . . . . 10 ((𝑈:dom 𝑈1-1-onto→ran 𝑈𝐾 ∈ ran 𝑈) → (𝑈𝐾) ∈ dom 𝑈)
13250, 54, 131syl2an2r 683 . . . . . . . . 9 ((𝜑𝐾 ∈ ran 𝑊) → (𝑈𝐾) ∈ dom 𝑈)
13348, 132mpdan 685 . . . . . . . 8 (𝜑 → (𝑈𝐾) ∈ dom 𝑈)
13474nn0zd 12088 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ ℤ)
135134peano2zd 12093 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝑊) + 1) ∈ ℤ)
136 elfzonn0 13085 . . . . . . . . . . . . . . . . 17 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → (𝑊𝐽) ∈ ℕ0)
137 nn0p1nn 11939 . . . . . . . . . . . . . . . . 17 ((𝑊𝐽) ∈ ℕ0 → ((𝑊𝐽) + 1) ∈ ℕ)
13836, 136, 1373syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐽) + 1) ∈ ℕ)
13920, 138eqeltrid 2920 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℕ)
140139nnred 11656 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℝ)
141134zred 12090 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ ℝ)
142 1red 10645 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
143 elfzle2 12914 . . . . . . . . . . . . . . 15 (𝐸 ∈ (0...(♯‘𝑊)) → 𝐸 ≤ (♯‘𝑊))
14439, 143syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸 ≤ (♯‘𝑊))
145140, 141, 142, 144leadd1dd 11257 . . . . . . . . . . . . 13 (𝜑 → (𝐸 + 1) ≤ ((♯‘𝑊) + 1))
146 eluz2 12252 . . . . . . . . . . . . 13 (((♯‘𝑊) + 1) ∈ (ℤ‘(𝐸 + 1)) ↔ ((𝐸 + 1) ∈ ℤ ∧ ((♯‘𝑊) + 1) ∈ ℤ ∧ (𝐸 + 1) ≤ ((♯‘𝑊) + 1)))
147103, 135, 145, 146syl3anbrc 1339 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) + 1) ∈ (ℤ‘(𝐸 + 1)))
148 fzoss2 13068 . . . . . . . . . . . 12 (((♯‘𝑊) + 1) ∈ (ℤ‘(𝐸 + 1)) → (0..^(𝐸 + 1)) ⊆ (0..^((♯‘𝑊) + 1)))
149147, 148syl 17 . . . . . . . . . . 11 (𝜑 → (0..^(𝐸 + 1)) ⊆ (0..^((♯‘𝑊) + 1)))
150 fzonn0p1 13117 . . . . . . . . . . . 12 (𝐸 ∈ ℕ0𝐸 ∈ (0..^(𝐸 + 1)))
15140, 150syl 17 . . . . . . . . . . 11 (𝜑𝐸 ∈ (0..^(𝐸 + 1)))
152149, 151sseldd 3971 . . . . . . . . . 10 (𝜑𝐸 ∈ (0..^((♯‘𝑊) + 1)))
153112oveq2d 7175 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝑈)) = (0..^((♯‘𝑊) + 1)))
154152, 153eleqtrrd 2919 . . . . . . . . 9 (𝜑𝐸 ∈ (0..^(♯‘𝑈)))
155 wrddm 13871 . . . . . . . . . 10 (𝑈 ∈ Word 𝐷 → dom 𝑈 = (0..^(♯‘𝑈)))
15618, 155syl 17 . . . . . . . . 9 (𝜑 → dom 𝑈 = (0..^(♯‘𝑈)))
157154, 156eleqtrrd 2919 . . . . . . . 8 (𝜑𝐸 ∈ dom 𝑈)
158 cycpmco2lem6.2 . . . . . . . . 9 (𝜑𝐾𝐼)
1591, 6, 2, 5, 13, 19, 20, 3cycpmco2lem2 30773 . . . . . . . . 9 (𝜑 → (𝑈𝐸) = 𝐼)
160158, 57, 1593netr4d 3096 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) ≠ (𝑈𝐸))
161 f1fveq 7023 . . . . . . . . . 10 ((𝑈:dom 𝑈1-1𝐷 ∧ ((𝑈𝐾) ∈ dom 𝑈𝐸 ∈ dom 𝑈)) → ((𝑈‘(𝑈𝐾)) = (𝑈𝐸) ↔ (𝑈𝐾) = 𝐸))
162161necon3bid 3063 . . . . . . . . 9 ((𝑈:dom 𝑈1-1𝐷 ∧ ((𝑈𝐾) ∈ dom 𝑈𝐸 ∈ dom 𝑈)) → ((𝑈‘(𝑈𝐾)) ≠ (𝑈𝐸) ↔ (𝑈𝐾) ≠ 𝐸))
163162biimp3a 1465 . . . . . . . 8 ((𝑈:dom 𝑈1-1𝐷 ∧ ((𝑈𝐾) ∈ dom 𝑈𝐸 ∈ dom 𝑈) ∧ (𝑈‘(𝑈𝐾)) ≠ (𝑈𝐸)) → (𝑈𝐾) ≠ 𝐸)
16421, 133, 157, 160, 163syl121anc 1371 . . . . . . 7 (𝜑 → (𝑈𝐾) ≠ 𝐸)
165 fzom1ne1 30527 . . . . . . 7 (((𝑈𝐾) ∈ (𝐸..^((♯‘𝑈) − 1)) ∧ (𝑈𝐾) ≠ 𝐸) → ((𝑈𝐾) − 1) ∈ (𝐸..^(((♯‘𝑈) − 1) − 1)))
16645, 164, 165syl2anc 586 . . . . . 6 (𝜑 → ((𝑈𝐾) − 1) ∈ (𝐸..^(((♯‘𝑈) − 1) − 1)))
167130, 166sseldd 3971 . . . . 5 (𝜑 → ((𝑈𝐾) − 1) ∈ (0..^((♯‘𝑊) − 1)))
1681, 2, 12, 29, 167cycpmfv1 30759 . . . 4 (𝜑 → ((𝑀𝑊)‘(𝑊‘((𝑈𝐾) − 1))) = (𝑊‘(((𝑈𝐾) − 1) + 1)))
16962, 64, 63subsub4d 11031 . . . . . . . . . 10 (𝜑 → (((𝑈𝐾) − 1) − 𝐸) = ((𝑈𝐾) − (1 + 𝐸)))
170169oveq1d 7174 . . . . . . . . 9 (𝜑 → ((((𝑈𝐾) − 1) − 𝐸) + (1 + 𝐸)) = (((𝑈𝐾) − (1 + 𝐸)) + (1 + 𝐸)))
17164, 63addcld 10663 . . . . . . . . . 10 (𝜑 → (1 + 𝐸) ∈ ℂ)
17262, 171npcand 11004 . . . . . . . . 9 (𝜑 → (((𝑈𝐾) − (1 + 𝐸)) + (1 + 𝐸)) = (𝑈𝐾))
173170, 172eqtr2d 2860 . . . . . . . 8 (𝜑 → (𝑈𝐾) = ((((𝑈𝐾) − 1) − 𝐸) + (1 + 𝐸)))
17459, 173fveq12d 6680 . . . . . . 7 (𝜑 → (𝑈‘(𝑈𝐾)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((((𝑈𝐾) − 1) − 𝐸) + (1 + 𝐸))))
17563, 75pncan3d 11003 . . . . . . . . . . . 12 (𝜑 → (𝐸 + ((♯‘𝑊) − 𝐸)) = (♯‘𝑊))
176113, 134eqeltrd 2916 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘𝑈) − 1) ∈ ℤ)
177 1zzd 12016 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
178176, 177zsubcld 12095 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝑈) − 1) − 1) ∈ ℤ)
179178zred 12090 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝑈) − 1) − 1) ∈ ℝ)
180113, 141eqeltrd 2916 . . . . . . . . . . . . . . . 16 (𝜑 → ((♯‘𝑈) − 1) ∈ ℝ)
181180ltm1d 11575 . . . . . . . . . . . . . . 15 (𝜑 → (((♯‘𝑈) − 1) − 1) < ((♯‘𝑈) − 1))
182181, 113breqtrd 5095 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝑈) − 1) − 1) < (♯‘𝑊))
183179, 141, 182ltled 10791 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝑈) − 1) − 1) ≤ (♯‘𝑊))
184 eluz1 12250 . . . . . . . . . . . . . 14 ((((♯‘𝑈) − 1) − 1) ∈ ℤ → ((♯‘𝑊) ∈ (ℤ‘(((♯‘𝑈) − 1) − 1)) ↔ ((♯‘𝑊) ∈ ℤ ∧ (((♯‘𝑈) − 1) − 1) ≤ (♯‘𝑊))))
185184biimpar 480 . . . . . . . . . . . . 13 (((((♯‘𝑈) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) ∈ ℤ ∧ (((♯‘𝑈) − 1) − 1) ≤ (♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ‘(((♯‘𝑈) − 1) − 1)))
186178, 134, 183, 185syl12anc 834 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑊) ∈ (ℤ‘(((♯‘𝑈) − 1) − 1)))
187175, 186eqeltrd 2916 . . . . . . . . . . 11 (𝜑 → (𝐸 + ((♯‘𝑊) − 𝐸)) ∈ (ℤ‘(((♯‘𝑈) − 1) − 1)))
188 fzoss2 13068 . . . . . . . . . . 11 ((𝐸 + ((♯‘𝑊) − 𝐸)) ∈ (ℤ‘(((♯‘𝑈) − 1) − 1)) → (𝐸..^(((♯‘𝑈) − 1) − 1)) ⊆ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸))))
189187, 188syl 17 . . . . . . . . . 10 (𝜑 → (𝐸..^(((♯‘𝑈) − 1) − 1)) ⊆ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸))))
190189, 166sseldd 3971 . . . . . . . . 9 (𝜑 → ((𝑈𝐾) − 1) ∈ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸))))
191134, 102zsubcld 12095 . . . . . . . . 9 (𝜑 → ((♯‘𝑊) − 𝐸) ∈ ℤ)
192 fzosubel3 13101 . . . . . . . . 9 ((((𝑈𝐾) − 1) ∈ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸))) ∧ ((♯‘𝑊) − 𝐸) ∈ ℤ) → (((𝑈𝐾) − 1) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸)))
193190, 191, 192syl2anc 586 . . . . . . . 8 (𝜑 → (((𝑈𝐾) − 1) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸)))
19412, 72, 39, 15, 193, 124splfv3 30636 . . . . . . 7 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((((𝑈𝐾) − 1) − 𝐸) + (1 + 𝐸))) = (𝑊‘((((𝑈𝐾) − 1) − 𝐸) + 𝐸)))
19562, 64subcld 11000 . . . . . . . . 9 (𝜑 → ((𝑈𝐾) − 1) ∈ ℂ)
196195, 63npcand 11004 . . . . . . . 8 (𝜑 → ((((𝑈𝐾) − 1) − 𝐸) + 𝐸) = ((𝑈𝐾) − 1))
197196fveq2d 6677 . . . . . . 7 (𝜑 → (𝑊‘((((𝑈𝐾) − 1) − 𝐸) + 𝐸)) = (𝑊‘((𝑈𝐾) − 1)))
198174, 194, 1973eqtrd 2863 . . . . . 6 (𝜑 → (𝑈‘(𝑈𝐾)) = (𝑊‘((𝑈𝐾) − 1)))
199198, 57eqtr3d 2861 . . . . 5 (𝜑 → (𝑊‘((𝑈𝐾) − 1)) = 𝐾)
200199fveq2d 6677 . . . 4 (𝜑 → ((𝑀𝑊)‘(𝑊‘((𝑈𝐾) − 1))) = ((𝑀𝑊)‘𝐾))
20162, 64npcand 11004 . . . . 5 (𝜑 → (((𝑈𝐾) − 1) + 1) = (𝑈𝐾))
202201fveq2d 6677 . . . 4 (𝜑 → (𝑊‘(((𝑈𝐾) − 1) + 1)) = (𝑊‘(𝑈𝐾)))
203168, 200, 2023eqtr3d 2867 . . 3 (𝜑 → ((𝑀𝑊)‘𝐾) = (𝑊‘(𝑈𝐾)))
20470, 125, 2033eqtr4rd 2870 . 2 (𝜑 → ((𝑀𝑊)‘𝐾) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(((𝑈𝐾) − 𝐸) + (1 + 𝐸))))
20568, 204eqtr4d 2862 1 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1536   ∈ wcel 2113   ≠ wne 3019  {crab 3145  Vcvv 3497   ∖ cdif 3936   ∪ cun 3937   ⊆ wss 3939  {csn 4570  ⟨cop 4576  ⟨cotp 4578   class class class wbr 5069  ◡ccnv 5557  dom cdm 5558  ran crn 5559  ⟶wf 6354  –1-1→wf1 6355  –1-1-onto→wf1o 6357  ‘cfv 6358  (class class class)co 7159  ℝcr 10539  0cc0 10540  1c1 10541   + caddc 10543   < clt 10678   ≤ cle 10679   − cmin 10873  ℕcn 11641  ℕ0cn0 11900  ℤcz 11984  ℤ≥cuz 12246  ...cfz 12895  ..^cfzo 13036  ♯chash 13693  Word cword 13864   ++ cconcat 13925  ⟨“cs1 13952   substr csubstr 14005   prefix cpfx 14035   splice csplice 14114  Basecbs 16486  SymGrpcsymg 18498  toCycctocyc 30752 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-hash 13694  df-word 13865  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-splice 14115  df-csh 14154  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-tset 16587  df-efmnd 18037  df-symg 18499  df-tocyc 30753 This theorem is referenced by:  cycpmco2  30779
 Copyright terms: Public domain W3C validator