Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem6 Structured version   Visualization version   GIF version

Theorem cycpmco2lem6 33088
Description: Lemma for cycpmco2 33090. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
cycpmco2lem.1 (𝜑𝐾 ∈ ran 𝑊)
cycpmco2lem6.2 (𝜑𝐾𝐼)
cycpmco2lem6.1 (𝜑 → (𝑈𝐾) ∈ (𝐸..^((♯‘𝑈) − 1)))
Assertion
Ref Expression
cycpmco2lem6 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))

Proof of Theorem cycpmco2lem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.c . . . 4 𝑀 = (toCyc‘𝐷)
2 cycpmco2.d . . . 4 (𝜑𝐷𝑉)
3 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
4 ssrab2 4043 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
5 cycpmco2.w . . . . . . . 8 (𝜑𝑊 ∈ dom 𝑀)
6 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
7 eqid 2729 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
81, 6, 7tocycf 33074 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
92, 8syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
109fdmd 6698 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
115, 10eleqtrd 2830 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
124, 11sselid 3944 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
13 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
1413eldifad 3926 . . . . . . 7 (𝜑𝐼𝐷)
1514s1cld 14568 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
16 splcl 14717 . . . . . 6 ((𝑊 ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
1712, 15, 16syl2anc 584 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) ∈ Word 𝐷)
183, 17eqeltrid 2832 . . . 4 (𝜑𝑈 ∈ Word 𝐷)
19 cycpmco2.j . . . . 5 (𝜑𝐽 ∈ ran 𝑊)
20 cycpmco2.e . . . . 5 𝐸 = ((𝑊𝐽) + 1)
211, 6, 2, 5, 13, 19, 20, 3cycpmco2f1 33081 . . . 4 (𝜑𝑈:dom 𝑈1-1𝐷)
22 fz0ssnn0 13583 . . . . . . . 8 (0...(♯‘𝑊)) ⊆ ℕ0
23 id 22 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊𝑤 = 𝑊)
24 dmeq 5867 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
25 eqidd 2730 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊𝐷 = 𝐷)
2623, 24, 25f1eq123d 6792 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
2726elrab 3659 . . . . . . . . . . . . . . 15 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2811, 27sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2928simprd 495 . . . . . . . . . . . . 13 (𝜑𝑊:dom 𝑊1-1𝐷)
30 f1cnv 6824 . . . . . . . . . . . . 13 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
31 f1of 6800 . . . . . . . . . . . . 13 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3229, 30, 313syl 18 . . . . . . . . . . . 12 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
3332, 19ffvelcdmd 7057 . . . . . . . . . . 11 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
34 wrddm 14486 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
3512, 34syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3633, 35eleqtrd 2830 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
37 fzofzp1 13725 . . . . . . . . . 10 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3836, 37syl 17 . . . . . . . . 9 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3920, 38eqeltrid 2832 . . . . . . . 8 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
4022, 39sselid 3944 . . . . . . 7 (𝜑𝐸 ∈ ℕ0)
41 nn0uz 12835 . . . . . . 7 0 = (ℤ‘0)
4240, 41eleqtrdi 2838 . . . . . 6 (𝜑𝐸 ∈ (ℤ‘0))
43 fzoss1 13647 . . . . . 6 (𝐸 ∈ (ℤ‘0) → (𝐸..^((♯‘𝑈) − 1)) ⊆ (0..^((♯‘𝑈) − 1)))
4442, 43syl 17 . . . . 5 (𝜑 → (𝐸..^((♯‘𝑈) − 1)) ⊆ (0..^((♯‘𝑈) − 1)))
45 cycpmco2lem6.1 . . . . 5 (𝜑 → (𝑈𝐾) ∈ (𝐸..^((♯‘𝑈) − 1)))
4644, 45sseldd 3947 . . . 4 (𝜑 → (𝑈𝐾) ∈ (0..^((♯‘𝑈) − 1)))
471, 2, 18, 21, 46cycpmfv1 33070 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = (𝑈‘((𝑈𝐾) + 1)))
48 cycpmco2lem.1 . . . . 5 (𝜑𝐾 ∈ ran 𝑊)
49 f1f1orn 6811 . . . . . . 7 (𝑈:dom 𝑈1-1𝐷𝑈:dom 𝑈1-1-onto→ran 𝑈)
5021, 49syl 17 . . . . . 6 (𝜑𝑈:dom 𝑈1-1-onto→ran 𝑈)
51 ssun1 4141 . . . . . . . 8 ran 𝑊 ⊆ (ran 𝑊 ∪ {𝐼})
521, 6, 2, 5, 13, 19, 20, 3cycpmco2rn 33082 . . . . . . . 8 (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼}))
5351, 52sseqtrrid 3990 . . . . . . 7 (𝜑 → ran 𝑊 ⊆ ran 𝑈)
5453sselda 3946 . . . . . 6 ((𝜑𝐾 ∈ ran 𝑊) → 𝐾 ∈ ran 𝑈)
55 f1ocnvfv2 7252 . . . . . 6 ((𝑈:dom 𝑈1-1-onto→ran 𝑈𝐾 ∈ ran 𝑈) → (𝑈‘(𝑈𝐾)) = 𝐾)
5650, 54, 55syl2an2r 685 . . . . 5 ((𝜑𝐾 ∈ ran 𝑊) → (𝑈‘(𝑈𝐾)) = 𝐾)
5748, 56mpdan 687 . . . 4 (𝜑 → (𝑈‘(𝑈𝐾)) = 𝐾)
5857fveq2d 6862 . . 3 (𝜑 → ((𝑀𝑈)‘(𝑈‘(𝑈𝐾))) = ((𝑀𝑈)‘𝐾))
593a1i 11 . . . 4 (𝜑𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩))
60 fzossz 13640 . . . . . . . 8 (𝐸..^((♯‘𝑈) − 1)) ⊆ ℤ
6160, 45sselid 3944 . . . . . . 7 (𝜑 → (𝑈𝐾) ∈ ℤ)
6261zcnd 12639 . . . . . 6 (𝜑 → (𝑈𝐾) ∈ ℂ)
6340nn0cnd 12505 . . . . . 6 (𝜑𝐸 ∈ ℂ)
64 1cnd 11169 . . . . . 6 (𝜑 → 1 ∈ ℂ)
6562, 63, 64nppcan3d 11560 . . . . 5 (𝜑 → (((𝑈𝐾) − 𝐸) + (1 + 𝐸)) = ((𝑈𝐾) + 1))
6665eqcomd 2735 . . . 4 (𝜑 → ((𝑈𝐾) + 1) = (((𝑈𝐾) − 𝐸) + (1 + 𝐸)))
6759, 66fveq12d 6865 . . 3 (𝜑 → (𝑈‘((𝑈𝐾) + 1)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(((𝑈𝐾) − 𝐸) + (1 + 𝐸))))
6847, 58, 673eqtr3d 2772 . 2 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(((𝑈𝐾) − 𝐸) + (1 + 𝐸))))
6962, 63npcand 11537 . . . 4 (𝜑 → (((𝑈𝐾) − 𝐸) + 𝐸) = (𝑈𝐾))
7069fveq2d 6862 . . 3 (𝜑 → (𝑊‘(((𝑈𝐾) − 𝐸) + 𝐸)) = (𝑊‘(𝑈𝐾)))
71 nn0fz0 13586 . . . . 5 (𝐸 ∈ ℕ0𝐸 ∈ (0...𝐸))
7240, 71sylib 218 . . . 4 (𝜑𝐸 ∈ (0...𝐸))
73 lencl 14498 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
7412, 73syl 17 . . . . . . . . . 10 (𝜑 → (♯‘𝑊) ∈ ℕ0)
7574nn0cnd 12505 . . . . . . . . 9 (𝜑 → (♯‘𝑊) ∈ ℂ)
76 ovexd 7422 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
7720, 76eqeltrid 2832 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ V)
78 splval 14716 . . . . . . . . . . . . . . 15 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
795, 77, 77, 15, 78syl13anc 1374 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
803, 79eqtrid 2776 . . . . . . . . . . . . 13 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
8180fveq2d 6862 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑈) = (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
82 pfxcl 14642 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
8312, 82syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
84 ccatcl 14539 . . . . . . . . . . . . . 14 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
8583, 15, 84syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
86 swrdcl 14610 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
8712, 86syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
88 ccatlen 14540 . . . . . . . . . . . . 13 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
8985, 87, 88syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
90 ccatws1len 14585 . . . . . . . . . . . . . . 15 ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
9112, 82, 903syl 18 . . . . . . . . . . . . . 14 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
92 pfxlen 14648 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
9312, 39, 92syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
9493oveq1d 7402 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1))
9591, 94eqtrd 2764 . . . . . . . . . . . . 13 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = (𝐸 + 1))
96 nn0fz0 13586 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
9774, 96sylib 218 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
98 swrdlen 14612 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
9912, 39, 97, 98syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
10095, 99oveq12d 7405 . . . . . . . . . . . 12 (𝜑 → ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
10181, 89, 1003eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (♯‘𝑈) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
10240nn0zd 12555 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℤ)
103102peano2zd 12641 . . . . . . . . . . . . 13 (𝜑 → (𝐸 + 1) ∈ ℤ)
104103zcnd 12639 . . . . . . . . . . . 12 (𝜑 → (𝐸 + 1) ∈ ℂ)
105104, 75, 63addsubassd 11553 . . . . . . . . . . 11 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
10663, 64, 75addassd 11196 . . . . . . . . . . . 12 (𝜑 → ((𝐸 + 1) + (♯‘𝑊)) = (𝐸 + (1 + (♯‘𝑊))))
107106oveq1d 7402 . . . . . . . . . . 11 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
108101, 105, 1073eqtr2d 2770 . . . . . . . . . 10 (𝜑 → (♯‘𝑈) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
10964, 75addcld 11193 . . . . . . . . . . 11 (𝜑 → (1 + (♯‘𝑊)) ∈ ℂ)
11063, 109pncan2d 11535 . . . . . . . . . 10 (𝜑 → ((𝐸 + (1 + (♯‘𝑊))) − 𝐸) = (1 + (♯‘𝑊)))
11164, 75addcomd 11376 . . . . . . . . . 10 (𝜑 → (1 + (♯‘𝑊)) = ((♯‘𝑊) + 1))
112108, 110, 1113eqtrd 2768 . . . . . . . . 9 (𝜑 → (♯‘𝑈) = ((♯‘𝑊) + 1))
11375, 64, 112mvrraddd 11590 . . . . . . . 8 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
114113oveq2d 7403 . . . . . . 7 (𝜑 → (𝐸..^((♯‘𝑈) − 1)) = (𝐸..^(♯‘𝑊)))
11545, 114eleqtrd 2830 . . . . . 6 (𝜑 → (𝑈𝐾) ∈ (𝐸..^(♯‘𝑊)))
116 fzosubel 13685 . . . . . 6 (((𝑈𝐾) ∈ (𝐸..^(♯‘𝑊)) ∧ 𝐸 ∈ ℤ) → ((𝑈𝐾) − 𝐸) ∈ ((𝐸𝐸)..^((♯‘𝑊) − 𝐸)))
117115, 102, 116syl2anc 584 . . . . 5 (𝜑 → ((𝑈𝐾) − 𝐸) ∈ ((𝐸𝐸)..^((♯‘𝑊) − 𝐸)))
11863subidd 11521 . . . . . 6 (𝜑 → (𝐸𝐸) = 0)
119118oveq1d 7402 . . . . 5 (𝜑 → ((𝐸𝐸)..^((♯‘𝑊) − 𝐸)) = (0..^((♯‘𝑊) − 𝐸)))
120117, 119eleqtrd 2830 . . . 4 (𝜑 → ((𝑈𝐾) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸)))
12164, 63addcomd 11376 . . . . 5 (𝜑 → (1 + 𝐸) = (𝐸 + 1))
122 s1len 14571 . . . . . 6 (♯‘⟨“𝐼”⟩) = 1
123122oveq2i 7398 . . . . 5 (𝐸 + (♯‘⟨“𝐼”⟩)) = (𝐸 + 1)
124121, 123eqtr4di 2782 . . . 4 (𝜑 → (1 + 𝐸) = (𝐸 + (♯‘⟨“𝐼”⟩)))
12512, 72, 39, 15, 120, 124splfv3 32880 . . 3 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(((𝑈𝐾) − 𝐸) + (1 + 𝐸))) = (𝑊‘(((𝑈𝐾) − 𝐸) + 𝐸)))
126113oveq1d 7402 . . . . . . . 8 (𝜑 → (((♯‘𝑈) − 1) − 1) = ((♯‘𝑊) − 1))
127126oveq2d 7403 . . . . . . 7 (𝜑 → (𝐸..^(((♯‘𝑈) − 1) − 1)) = (𝐸..^((♯‘𝑊) − 1)))
128 fzoss1 13647 . . . . . . . 8 (𝐸 ∈ (ℤ‘0) → (𝐸..^((♯‘𝑊) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
12942, 128syl 17 . . . . . . 7 (𝜑 → (𝐸..^((♯‘𝑊) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
130127, 129eqsstrd 3981 . . . . . 6 (𝜑 → (𝐸..^(((♯‘𝑈) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
131 f1ocnvdm 7260 . . . . . . . . . 10 ((𝑈:dom 𝑈1-1-onto→ran 𝑈𝐾 ∈ ran 𝑈) → (𝑈𝐾) ∈ dom 𝑈)
13250, 54, 131syl2an2r 685 . . . . . . . . 9 ((𝜑𝐾 ∈ ran 𝑊) → (𝑈𝐾) ∈ dom 𝑈)
13348, 132mpdan 687 . . . . . . . 8 (𝜑 → (𝑈𝐾) ∈ dom 𝑈)
13474nn0zd 12555 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ ℤ)
135134peano2zd 12641 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝑊) + 1) ∈ ℤ)
136 elfzonn0 13668 . . . . . . . . . . . . . . . . 17 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → (𝑊𝐽) ∈ ℕ0)
137 nn0p1nn 12481 . . . . . . . . . . . . . . . . 17 ((𝑊𝐽) ∈ ℕ0 → ((𝑊𝐽) + 1) ∈ ℕ)
13836, 136, 1373syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑊𝐽) + 1) ∈ ℕ)
13920, 138eqeltrid 2832 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℕ)
140139nnred 12201 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℝ)
141134zred 12638 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ ℝ)
142 1red 11175 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
143 elfzle2 13489 . . . . . . . . . . . . . . 15 (𝐸 ∈ (0...(♯‘𝑊)) → 𝐸 ≤ (♯‘𝑊))
14439, 143syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸 ≤ (♯‘𝑊))
145140, 141, 142, 144leadd1dd 11792 . . . . . . . . . . . . 13 (𝜑 → (𝐸 + 1) ≤ ((♯‘𝑊) + 1))
146 eluz2 12799 . . . . . . . . . . . . 13 (((♯‘𝑊) + 1) ∈ (ℤ‘(𝐸 + 1)) ↔ ((𝐸 + 1) ∈ ℤ ∧ ((♯‘𝑊) + 1) ∈ ℤ ∧ (𝐸 + 1) ≤ ((♯‘𝑊) + 1)))
147103, 135, 145, 146syl3anbrc 1344 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝑊) + 1) ∈ (ℤ‘(𝐸 + 1)))
148 fzoss2 13648 . . . . . . . . . . . 12 (((♯‘𝑊) + 1) ∈ (ℤ‘(𝐸 + 1)) → (0..^(𝐸 + 1)) ⊆ (0..^((♯‘𝑊) + 1)))
149147, 148syl 17 . . . . . . . . . . 11 (𝜑 → (0..^(𝐸 + 1)) ⊆ (0..^((♯‘𝑊) + 1)))
150 fzonn0p1 13703 . . . . . . . . . . . 12 (𝐸 ∈ ℕ0𝐸 ∈ (0..^(𝐸 + 1)))
15140, 150syl 17 . . . . . . . . . . 11 (𝜑𝐸 ∈ (0..^(𝐸 + 1)))
152149, 151sseldd 3947 . . . . . . . . . 10 (𝜑𝐸 ∈ (0..^((♯‘𝑊) + 1)))
153112oveq2d 7403 . . . . . . . . . 10 (𝜑 → (0..^(♯‘𝑈)) = (0..^((♯‘𝑊) + 1)))
154152, 153eleqtrrd 2831 . . . . . . . . 9 (𝜑𝐸 ∈ (0..^(♯‘𝑈)))
155 wrddm 14486 . . . . . . . . . 10 (𝑈 ∈ Word 𝐷 → dom 𝑈 = (0..^(♯‘𝑈)))
15618, 155syl 17 . . . . . . . . 9 (𝜑 → dom 𝑈 = (0..^(♯‘𝑈)))
157154, 156eleqtrrd 2831 . . . . . . . 8 (𝜑𝐸 ∈ dom 𝑈)
158 cycpmco2lem6.2 . . . . . . . . 9 (𝜑𝐾𝐼)
1591, 6, 2, 5, 13, 19, 20, 3cycpmco2lem2 33084 . . . . . . . . 9 (𝜑 → (𝑈𝐸) = 𝐼)
160158, 57, 1593netr4d 3002 . . . . . . . 8 (𝜑 → (𝑈‘(𝑈𝐾)) ≠ (𝑈𝐸))
161 f1fveq 7237 . . . . . . . . . 10 ((𝑈:dom 𝑈1-1𝐷 ∧ ((𝑈𝐾) ∈ dom 𝑈𝐸 ∈ dom 𝑈)) → ((𝑈‘(𝑈𝐾)) = (𝑈𝐸) ↔ (𝑈𝐾) = 𝐸))
162161necon3bid 2969 . . . . . . . . 9 ((𝑈:dom 𝑈1-1𝐷 ∧ ((𝑈𝐾) ∈ dom 𝑈𝐸 ∈ dom 𝑈)) → ((𝑈‘(𝑈𝐾)) ≠ (𝑈𝐸) ↔ (𝑈𝐾) ≠ 𝐸))
163162biimp3a 1471 . . . . . . . 8 ((𝑈:dom 𝑈1-1𝐷 ∧ ((𝑈𝐾) ∈ dom 𝑈𝐸 ∈ dom 𝑈) ∧ (𝑈‘(𝑈𝐾)) ≠ (𝑈𝐸)) → (𝑈𝐾) ≠ 𝐸)
16421, 133, 157, 160, 163syl121anc 1377 . . . . . . 7 (𝜑 → (𝑈𝐾) ≠ 𝐸)
165 fzom1ne1 32724 . . . . . . 7 (((𝑈𝐾) ∈ (𝐸..^((♯‘𝑈) − 1)) ∧ (𝑈𝐾) ≠ 𝐸) → ((𝑈𝐾) − 1) ∈ (𝐸..^(((♯‘𝑈) − 1) − 1)))
16645, 164, 165syl2anc 584 . . . . . 6 (𝜑 → ((𝑈𝐾) − 1) ∈ (𝐸..^(((♯‘𝑈) − 1) − 1)))
167130, 166sseldd 3947 . . . . 5 (𝜑 → ((𝑈𝐾) − 1) ∈ (0..^((♯‘𝑊) − 1)))
1681, 2, 12, 29, 167cycpmfv1 33070 . . . 4 (𝜑 → ((𝑀𝑊)‘(𝑊‘((𝑈𝐾) − 1))) = (𝑊‘(((𝑈𝐾) − 1) + 1)))
16962, 64, 63subsub4d 11564 . . . . . . . . . 10 (𝜑 → (((𝑈𝐾) − 1) − 𝐸) = ((𝑈𝐾) − (1 + 𝐸)))
170169oveq1d 7402 . . . . . . . . 9 (𝜑 → ((((𝑈𝐾) − 1) − 𝐸) + (1 + 𝐸)) = (((𝑈𝐾) − (1 + 𝐸)) + (1 + 𝐸)))
17164, 63addcld 11193 . . . . . . . . . 10 (𝜑 → (1 + 𝐸) ∈ ℂ)
17262, 171npcand 11537 . . . . . . . . 9 (𝜑 → (((𝑈𝐾) − (1 + 𝐸)) + (1 + 𝐸)) = (𝑈𝐾))
173170, 172eqtr2d 2765 . . . . . . . 8 (𝜑 → (𝑈𝐾) = ((((𝑈𝐾) − 1) − 𝐸) + (1 + 𝐸)))
17459, 173fveq12d 6865 . . . . . . 7 (𝜑 → (𝑈‘(𝑈𝐾)) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((((𝑈𝐾) − 1) − 𝐸) + (1 + 𝐸))))
17563, 75pncan3d 11536 . . . . . . . . . . . 12 (𝜑 → (𝐸 + ((♯‘𝑊) − 𝐸)) = (♯‘𝑊))
176113, 134eqeltrd 2828 . . . . . . . . . . . . . 14 (𝜑 → ((♯‘𝑈) − 1) ∈ ℤ)
177 1zzd 12564 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℤ)
178176, 177zsubcld 12643 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝑈) − 1) − 1) ∈ ℤ)
179178zred 12638 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝑈) − 1) − 1) ∈ ℝ)
180113, 141eqeltrd 2828 . . . . . . . . . . . . . . . 16 (𝜑 → ((♯‘𝑈) − 1) ∈ ℝ)
181180ltm1d 12115 . . . . . . . . . . . . . . 15 (𝜑 → (((♯‘𝑈) − 1) − 1) < ((♯‘𝑈) − 1))
182181, 113breqtrd 5133 . . . . . . . . . . . . . 14 (𝜑 → (((♯‘𝑈) − 1) − 1) < (♯‘𝑊))
183179, 141, 182ltled 11322 . . . . . . . . . . . . 13 (𝜑 → (((♯‘𝑈) − 1) − 1) ≤ (♯‘𝑊))
184 eluz1 12797 . . . . . . . . . . . . . 14 ((((♯‘𝑈) − 1) − 1) ∈ ℤ → ((♯‘𝑊) ∈ (ℤ‘(((♯‘𝑈) − 1) − 1)) ↔ ((♯‘𝑊) ∈ ℤ ∧ (((♯‘𝑈) − 1) − 1) ≤ (♯‘𝑊))))
185184biimpar 477 . . . . . . . . . . . . 13 (((((♯‘𝑈) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) ∈ ℤ ∧ (((♯‘𝑈) − 1) − 1) ≤ (♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ‘(((♯‘𝑈) − 1) − 1)))
186178, 134, 183, 185syl12anc 836 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑊) ∈ (ℤ‘(((♯‘𝑈) − 1) − 1)))
187175, 186eqeltrd 2828 . . . . . . . . . . 11 (𝜑 → (𝐸 + ((♯‘𝑊) − 𝐸)) ∈ (ℤ‘(((♯‘𝑈) − 1) − 1)))
188 fzoss2 13648 . . . . . . . . . . 11 ((𝐸 + ((♯‘𝑊) − 𝐸)) ∈ (ℤ‘(((♯‘𝑈) − 1) − 1)) → (𝐸..^(((♯‘𝑈) − 1) − 1)) ⊆ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸))))
189187, 188syl 17 . . . . . . . . . 10 (𝜑 → (𝐸..^(((♯‘𝑈) − 1) − 1)) ⊆ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸))))
190189, 166sseldd 3947 . . . . . . . . 9 (𝜑 → ((𝑈𝐾) − 1) ∈ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸))))
191134, 102zsubcld 12643 . . . . . . . . 9 (𝜑 → ((♯‘𝑊) − 𝐸) ∈ ℤ)
192 fzosubel3 13687 . . . . . . . . 9 ((((𝑈𝐾) − 1) ∈ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸))) ∧ ((♯‘𝑊) − 𝐸) ∈ ℤ) → (((𝑈𝐾) − 1) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸)))
193190, 191, 192syl2anc 584 . . . . . . . 8 (𝜑 → (((𝑈𝐾) − 1) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸)))
19412, 72, 39, 15, 193, 124splfv3 32880 . . . . . . 7 (𝜑 → ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘((((𝑈𝐾) − 1) − 𝐸) + (1 + 𝐸))) = (𝑊‘((((𝑈𝐾) − 1) − 𝐸) + 𝐸)))
19562, 64subcld 11533 . . . . . . . . 9 (𝜑 → ((𝑈𝐾) − 1) ∈ ℂ)
196195, 63npcand 11537 . . . . . . . 8 (𝜑 → ((((𝑈𝐾) − 1) − 𝐸) + 𝐸) = ((𝑈𝐾) − 1))
197196fveq2d 6862 . . . . . . 7 (𝜑 → (𝑊‘((((𝑈𝐾) − 1) − 𝐸) + 𝐸)) = (𝑊‘((𝑈𝐾) − 1)))
198174, 194, 1973eqtrd 2768 . . . . . 6 (𝜑 → (𝑈‘(𝑈𝐾)) = (𝑊‘((𝑈𝐾) − 1)))
199198, 57eqtr3d 2766 . . . . 5 (𝜑 → (𝑊‘((𝑈𝐾) − 1)) = 𝐾)
200199fveq2d 6862 . . . 4 (𝜑 → ((𝑀𝑊)‘(𝑊‘((𝑈𝐾) − 1))) = ((𝑀𝑊)‘𝐾))
20162, 64npcand 11537 . . . . 5 (𝜑 → (((𝑈𝐾) − 1) + 1) = (𝑈𝐾))
202201fveq2d 6862 . . . 4 (𝜑 → (𝑊‘(((𝑈𝐾) − 1) + 1)) = (𝑊‘(𝑈𝐾)))
203168, 200, 2023eqtr3d 2772 . . 3 (𝜑 → ((𝑀𝑊)‘𝐾) = (𝑊‘(𝑈𝐾)))
20470, 125, 2033eqtr4rd 2775 . 2 (𝜑 → ((𝑀𝑊)‘𝐾) = ((𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)‘(((𝑈𝐾) − 𝐸) + (1 + 𝐸))))
20568, 204eqtr4d 2767 1 (𝜑 → ((𝑀𝑈)‘𝐾) = ((𝑀𝑊)‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  wss 3914  {csn 4589  cop 4595  cotp 4597   class class class wbr 5107  ccnv 5637  dom cdm 5638  ran crn 5639  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535  ⟨“cs1 14560   substr csubstr 14605   prefix cpfx 14635   splice csplice 14714  Basecbs 17179  SymGrpcsymg 19299  toCycctocyc 33063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-csh 14754  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-efmnd 18796  df-symg 19300  df-tocyc 33064
This theorem is referenced by:  cycpmco2  33090
  Copyright terms: Public domain W3C validator