Step | Hyp | Ref
| Expression |
1 | | cycpmco2.c |
. . . 4
⊢ 𝑀 = (toCyc‘𝐷) |
2 | | cycpmco2.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
3 | | cycpmco2.1 |
. . . . 5
⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) |
4 | | ssrab2 4009 |
. . . . . . 7
⊢ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ⊆ Word 𝐷 |
5 | | cycpmco2.w |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ dom 𝑀) |
6 | | cycpmco2.s |
. . . . . . . . . . 11
⊢ 𝑆 = (SymGrp‘𝐷) |
7 | | eqid 2739 |
. . . . . . . . . . 11
⊢
(Base‘𝑆) =
(Base‘𝑆) |
8 | 1, 6, 7 | tocycf 31134 |
. . . . . . . . . 10
⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
9 | 2, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
10 | 9 | fdmd 6577 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
11 | 5, 10 | eleqtrd 2842 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
12 | 4, 11 | sselid 3915 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
13 | | cycpmco2.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) |
14 | 13 | eldifad 3895 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
15 | 14 | s1cld 14192 |
. . . . . 6
⊢ (𝜑 → 〈“𝐼”〉 ∈ Word 𝐷) |
16 | | splcl 14349 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝐷 ∧ 〈“𝐼”〉 ∈ Word 𝐷) → (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) ∈ Word 𝐷) |
17 | 12, 15, 16 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) ∈ Word 𝐷) |
18 | 3, 17 | eqeltrid 2844 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ Word 𝐷) |
19 | | cycpmco2.j |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ ran 𝑊) |
20 | | cycpmco2.e |
. . . . 5
⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) |
21 | 1, 6, 2, 5, 13, 19, 20, 3 | cycpmco2f1 31141 |
. . . 4
⊢ (𝜑 → 𝑈:dom 𝑈–1-1→𝐷) |
22 | | fz0ssnn0 13236 |
. . . . . . . 8
⊢
(0...(♯‘𝑊)) ⊆
ℕ0 |
23 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) |
24 | | dmeq 5789 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊) |
25 | | eqidd 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑊 → 𝐷 = 𝐷) |
26 | 23, 24, 25 | f1eq123d 6674 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑊 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
27 | 26 | elrab 3617 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷)) |
28 | 11, 27 | sylib 221 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷)) |
29 | 28 | simprd 499 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
30 | | f1cnv 6705 |
. . . . . . . . . . . . 13
⊢ (𝑊:dom 𝑊–1-1→𝐷 → ◡𝑊:ran 𝑊–1-1-onto→dom
𝑊) |
31 | | f1of 6682 |
. . . . . . . . . . . . 13
⊢ (◡𝑊:ran 𝑊–1-1-onto→dom
𝑊 → ◡𝑊:ran 𝑊⟶dom 𝑊) |
32 | 29, 30, 31 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ◡𝑊:ran 𝑊⟶dom 𝑊) |
33 | 32, 19 | ffvelrnd 6926 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝑊‘𝐽) ∈ dom 𝑊) |
34 | | wrddm 14108 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊))) |
35 | 12, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
36 | 33, 35 | eleqtrd 2842 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝑊‘𝐽) ∈ (0..^(♯‘𝑊))) |
37 | | fzofzp1 13368 |
. . . . . . . . . 10
⊢ ((◡𝑊‘𝐽) ∈ (0..^(♯‘𝑊)) → ((◡𝑊‘𝐽) + 1) ∈ (0...(♯‘𝑊))) |
38 | 36, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((◡𝑊‘𝐽) + 1) ∈ (0...(♯‘𝑊))) |
39 | 20, 38 | eqeltrid 2844 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ (0...(♯‘𝑊))) |
40 | 22, 39 | sselid 3915 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈
ℕ0) |
41 | | nn0uz 12505 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
42 | 40, 41 | eleqtrdi 2850 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈
(ℤ≥‘0)) |
43 | | fzoss1 13298 |
. . . . . 6
⊢ (𝐸 ∈
(ℤ≥‘0) → (𝐸..^((♯‘𝑈) − 1)) ⊆
(0..^((♯‘𝑈)
− 1))) |
44 | 42, 43 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐸..^((♯‘𝑈) − 1)) ⊆
(0..^((♯‘𝑈)
− 1))) |
45 | | cycpmco2lem6.1 |
. . . . 5
⊢ (𝜑 → (◡𝑈‘𝐾) ∈ (𝐸..^((♯‘𝑈) − 1))) |
46 | 44, 45 | sseldd 3918 |
. . . 4
⊢ (𝜑 → (◡𝑈‘𝐾) ∈ (0..^((♯‘𝑈) − 1))) |
47 | 1, 2, 18, 21, 46 | cycpmfv1 31130 |
. . 3
⊢ (𝜑 → ((𝑀‘𝑈)‘(𝑈‘(◡𝑈‘𝐾))) = (𝑈‘((◡𝑈‘𝐾) + 1))) |
48 | | cycpmco2lem.1 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ran 𝑊) |
49 | | f1f1orn 6693 |
. . . . . . 7
⊢ (𝑈:dom 𝑈–1-1→𝐷 → 𝑈:dom 𝑈–1-1-onto→ran
𝑈) |
50 | 21, 49 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑈:dom 𝑈–1-1-onto→ran
𝑈) |
51 | | ssun1 4102 |
. . . . . . . 8
⊢ ran 𝑊 ⊆ (ran 𝑊 ∪ {𝐼}) |
52 | 1, 6, 2, 5, 13, 19, 20, 3 | cycpmco2rn 31142 |
. . . . . . . 8
⊢ (𝜑 → ran 𝑈 = (ran 𝑊 ∪ {𝐼})) |
53 | 51, 52 | sseqtrrid 3970 |
. . . . . . 7
⊢ (𝜑 → ran 𝑊 ⊆ ran 𝑈) |
54 | 53 | sselda 3917 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ ran 𝑊) → 𝐾 ∈ ran 𝑈) |
55 | | f1ocnvfv2 7109 |
. . . . . 6
⊢ ((𝑈:dom 𝑈–1-1-onto→ran
𝑈 ∧ 𝐾 ∈ ran 𝑈) → (𝑈‘(◡𝑈‘𝐾)) = 𝐾) |
56 | 50, 54, 55 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ ran 𝑊) → (𝑈‘(◡𝑈‘𝐾)) = 𝐾) |
57 | 48, 56 | mpdan 687 |
. . . 4
⊢ (𝜑 → (𝑈‘(◡𝑈‘𝐾)) = 𝐾) |
58 | 57 | fveq2d 6742 |
. . 3
⊢ (𝜑 → ((𝑀‘𝑈)‘(𝑈‘(◡𝑈‘𝐾))) = ((𝑀‘𝑈)‘𝐾)) |
59 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉)) |
60 | | fzossz 13291 |
. . . . . . . 8
⊢ (𝐸..^((♯‘𝑈) − 1)) ⊆
ℤ |
61 | 60, 45 | sselid 3915 |
. . . . . . 7
⊢ (𝜑 → (◡𝑈‘𝐾) ∈ ℤ) |
62 | 61 | zcnd 12312 |
. . . . . 6
⊢ (𝜑 → (◡𝑈‘𝐾) ∈ ℂ) |
63 | 40 | nn0cnd 12181 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ ℂ) |
64 | | 1cnd 10857 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
65 | 62, 63, 64 | nppcan3d 11245 |
. . . . 5
⊢ (𝜑 → (((◡𝑈‘𝐾) − 𝐸) + (1 + 𝐸)) = ((◡𝑈‘𝐾) + 1)) |
66 | 65 | eqcomd 2745 |
. . . 4
⊢ (𝜑 → ((◡𝑈‘𝐾) + 1) = (((◡𝑈‘𝐾) − 𝐸) + (1 + 𝐸))) |
67 | 59, 66 | fveq12d 6745 |
. . 3
⊢ (𝜑 → (𝑈‘((◡𝑈‘𝐾) + 1)) = ((𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉)‘(((◡𝑈‘𝐾) − 𝐸) + (1 + 𝐸)))) |
68 | 47, 58, 67 | 3eqtr3d 2787 |
. 2
⊢ (𝜑 → ((𝑀‘𝑈)‘𝐾) = ((𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉)‘(((◡𝑈‘𝐾) − 𝐸) + (1 + 𝐸)))) |
69 | 62, 63 | npcand 11222 |
. . . 4
⊢ (𝜑 → (((◡𝑈‘𝐾) − 𝐸) + 𝐸) = (◡𝑈‘𝐾)) |
70 | 69 | fveq2d 6742 |
. . 3
⊢ (𝜑 → (𝑊‘(((◡𝑈‘𝐾) − 𝐸) + 𝐸)) = (𝑊‘(◡𝑈‘𝐾))) |
71 | | nn0fz0 13239 |
. . . . 5
⊢ (𝐸 ∈ ℕ0
↔ 𝐸 ∈ (0...𝐸)) |
72 | 40, 71 | sylib 221 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ (0...𝐸)) |
73 | | lencl 14120 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈
ℕ0) |
74 | 12, 73 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝑊) ∈
ℕ0) |
75 | 74 | nn0cnd 12181 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑊) ∈
ℂ) |
76 | | ovexd 7269 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((◡𝑊‘𝐽) + 1) ∈ V) |
77 | 20, 76 | eqeltrid 2844 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 ∈ V) |
78 | | splval 14348 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ 〈“𝐼”〉 ∈ Word 𝐷)) → (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) |
79 | 5, 77, 77, 15, 78 | syl13anc 1374 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) |
80 | 3, 79 | syl5eq 2792 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) |
81 | 80 | fveq2d 6742 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑈) = (♯‘(((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉)))) |
82 | | pfxcl 14274 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷) |
83 | 12, 82 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷) |
84 | | ccatcl 14161 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ 〈“𝐼”〉 ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ∈ Word 𝐷) |
85 | 83, 15, 84 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ∈ Word 𝐷) |
86 | | swrdcl 14242 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ Word 𝐷 → (𝑊 substr 〈𝐸, (♯‘𝑊)〉) ∈ Word 𝐷) |
87 | 12, 86 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑊 substr 〈𝐸, (♯‘𝑊)〉) ∈ Word 𝐷) |
88 | | ccatlen 14162 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ∈ Word 𝐷 ∧ (𝑊 substr 〈𝐸, (♯‘𝑊)〉) ∈ Word 𝐷) → (♯‘(((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) = ((♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) + (♯‘(𝑊 substr 〈𝐸, (♯‘𝑊)〉)))) |
89 | 85, 87, 88 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘(((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) = ((♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) + (♯‘(𝑊 substr 〈𝐸, (♯‘𝑊)〉)))) |
90 | | ccatws1len 14209 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) = ((♯‘(𝑊 prefix 𝐸)) + 1)) |
91 | 12, 82, 90 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) = ((♯‘(𝑊 prefix 𝐸)) + 1)) |
92 | | pfxlen 14280 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸) |
93 | 12, 39, 92 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸) |
94 | 93 | oveq1d 7249 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1)) |
95 | 91, 94 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) = (𝐸 + 1)) |
96 | | nn0fz0 13239 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑊)
∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊))) |
97 | 74, 96 | sylib 221 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝑊) ∈
(0...(♯‘𝑊))) |
98 | | swrdlen 14244 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈
(0...(♯‘𝑊)))
→ (♯‘(𝑊
substr 〈𝐸,
(♯‘𝑊)〉)) =
((♯‘𝑊) −
𝐸)) |
99 | 12, 39, 97, 98 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (♯‘(𝑊 substr 〈𝐸, (♯‘𝑊)〉)) = ((♯‘𝑊) − 𝐸)) |
100 | 95, 99 | oveq12d 7252 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) + (♯‘(𝑊 substr 〈𝐸, (♯‘𝑊)〉))) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸))) |
101 | 81, 89, 100 | 3eqtrd 2783 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝑈) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸))) |
102 | 40 | nn0zd 12309 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ∈ ℤ) |
103 | 102 | peano2zd 12314 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 + 1) ∈ ℤ) |
104 | 103 | zcnd 12312 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 + 1) ∈ ℂ) |
105 | 104, 75, 63 | addsubassd 11238 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸))) |
106 | 63, 64, 75 | addassd 10884 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐸 + 1) + (♯‘𝑊)) = (𝐸 + (1 + (♯‘𝑊)))) |
107 | 106 | oveq1d 7249 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸)) |
108 | 101, 105,
107 | 3eqtr2d 2785 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝑈) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸)) |
109 | 64, 75 | addcld 10881 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 + (♯‘𝑊)) ∈
ℂ) |
110 | 63, 109 | pncan2d 11220 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸 + (1 + (♯‘𝑊))) − 𝐸) = (1 + (♯‘𝑊))) |
111 | 64, 75 | addcomd 11063 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + (♯‘𝑊)) = ((♯‘𝑊) + 1)) |
112 | 108, 110,
111 | 3eqtrd 2783 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑈) = ((♯‘𝑊) + 1)) |
113 | 75, 64, 112 | mvrraddd 11273 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘𝑈) − 1) =
(♯‘𝑊)) |
114 | 113 | oveq2d 7250 |
. . . . . . 7
⊢ (𝜑 → (𝐸..^((♯‘𝑈) − 1)) = (𝐸..^(♯‘𝑊))) |
115 | 45, 114 | eleqtrd 2842 |
. . . . . 6
⊢ (𝜑 → (◡𝑈‘𝐾) ∈ (𝐸..^(♯‘𝑊))) |
116 | | fzosubel 13330 |
. . . . . 6
⊢ (((◡𝑈‘𝐾) ∈ (𝐸..^(♯‘𝑊)) ∧ 𝐸 ∈ ℤ) → ((◡𝑈‘𝐾) − 𝐸) ∈ ((𝐸 − 𝐸)..^((♯‘𝑊) − 𝐸))) |
117 | 115, 102,
116 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → ((◡𝑈‘𝐾) − 𝐸) ∈ ((𝐸 − 𝐸)..^((♯‘𝑊) − 𝐸))) |
118 | 63 | subidd 11206 |
. . . . . 6
⊢ (𝜑 → (𝐸 − 𝐸) = 0) |
119 | 118 | oveq1d 7249 |
. . . . 5
⊢ (𝜑 → ((𝐸 − 𝐸)..^((♯‘𝑊) − 𝐸)) = (0..^((♯‘𝑊) − 𝐸))) |
120 | 117, 119 | eleqtrd 2842 |
. . . 4
⊢ (𝜑 → ((◡𝑈‘𝐾) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸))) |
121 | 64, 63 | addcomd 11063 |
. . . . 5
⊢ (𝜑 → (1 + 𝐸) = (𝐸 + 1)) |
122 | | s1len 14195 |
. . . . . 6
⊢
(♯‘〈“𝐼”〉) = 1 |
123 | 122 | oveq2i 7245 |
. . . . 5
⊢ (𝐸 +
(♯‘〈“𝐼”〉)) = (𝐸 + 1) |
124 | 121, 123 | eqtr4di 2798 |
. . . 4
⊢ (𝜑 → (1 + 𝐸) = (𝐸 + (♯‘〈“𝐼”〉))) |
125 | 12, 72, 39, 15, 120, 124 | splfv3 30981 |
. . 3
⊢ (𝜑 → ((𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉)‘(((◡𝑈‘𝐾) − 𝐸) + (1 + 𝐸))) = (𝑊‘(((◡𝑈‘𝐾) − 𝐸) + 𝐸))) |
126 | 113 | oveq1d 7249 |
. . . . . . . 8
⊢ (𝜑 → (((♯‘𝑈) − 1) − 1) =
((♯‘𝑊) −
1)) |
127 | 126 | oveq2d 7250 |
. . . . . . 7
⊢ (𝜑 → (𝐸..^(((♯‘𝑈) − 1) − 1)) = (𝐸..^((♯‘𝑊) − 1))) |
128 | | fzoss1 13298 |
. . . . . . . 8
⊢ (𝐸 ∈
(ℤ≥‘0) → (𝐸..^((♯‘𝑊) − 1)) ⊆
(0..^((♯‘𝑊)
− 1))) |
129 | 42, 128 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐸..^((♯‘𝑊) − 1)) ⊆
(0..^((♯‘𝑊)
− 1))) |
130 | 127, 129 | eqsstrd 3955 |
. . . . . 6
⊢ (𝜑 → (𝐸..^(((♯‘𝑈) − 1) − 1)) ⊆
(0..^((♯‘𝑊)
− 1))) |
131 | | f1ocnvdm 7116 |
. . . . . . . . . 10
⊢ ((𝑈:dom 𝑈–1-1-onto→ran
𝑈 ∧ 𝐾 ∈ ran 𝑈) → (◡𝑈‘𝐾) ∈ dom 𝑈) |
132 | 50, 54, 131 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ ran 𝑊) → (◡𝑈‘𝐾) ∈ dom 𝑈) |
133 | 48, 132 | mpdan 687 |
. . . . . . . 8
⊢ (𝜑 → (◡𝑈‘𝐾) ∈ dom 𝑈) |
134 | 74 | nn0zd 12309 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝑊) ∈
ℤ) |
135 | 134 | peano2zd 12314 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((♯‘𝑊) + 1) ∈
ℤ) |
136 | | elfzonn0 13316 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑊‘𝐽) ∈ (0..^(♯‘𝑊)) → (◡𝑊‘𝐽) ∈
ℕ0) |
137 | | nn0p1nn 12158 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑊‘𝐽) ∈ ℕ0 → ((◡𝑊‘𝐽) + 1) ∈ ℕ) |
138 | 36, 136, 137 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((◡𝑊‘𝐽) + 1) ∈ ℕ) |
139 | 20, 138 | eqeltrid 2844 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐸 ∈ ℕ) |
140 | 139 | nnred 11874 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ∈ ℝ) |
141 | 134 | zred 12311 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝑊) ∈
ℝ) |
142 | | 1red 10863 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℝ) |
143 | | elfzle2 13145 |
. . . . . . . . . . . . . . 15
⊢ (𝐸 ∈
(0...(♯‘𝑊))
→ 𝐸 ≤
(♯‘𝑊)) |
144 | 39, 143 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ≤ (♯‘𝑊)) |
145 | 140, 141,
142, 144 | leadd1dd 11475 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 + 1) ≤ ((♯‘𝑊) + 1)) |
146 | | eluz2 12473 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑊)
+ 1) ∈ (ℤ≥‘(𝐸 + 1)) ↔ ((𝐸 + 1) ∈ ℤ ∧
((♯‘𝑊) + 1)
∈ ℤ ∧ (𝐸 +
1) ≤ ((♯‘𝑊)
+ 1))) |
147 | 103, 135,
145, 146 | syl3anbrc 1345 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝑊) + 1) ∈
(ℤ≥‘(𝐸 + 1))) |
148 | | fzoss2 13299 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑊)
+ 1) ∈ (ℤ≥‘(𝐸 + 1)) → (0..^(𝐸 + 1)) ⊆ (0..^((♯‘𝑊) + 1))) |
149 | 147, 148 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0..^(𝐸 + 1)) ⊆ (0..^((♯‘𝑊) + 1))) |
150 | | fzonn0p1 13348 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ ℕ0
→ 𝐸 ∈ (0..^(𝐸 + 1))) |
151 | 40, 150 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∈ (0..^(𝐸 + 1))) |
152 | 149, 151 | sseldd 3918 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ (0..^((♯‘𝑊) + 1))) |
153 | 112 | oveq2d 7250 |
. . . . . . . . . 10
⊢ (𝜑 → (0..^(♯‘𝑈)) = (0..^((♯‘𝑊) + 1))) |
154 | 152, 153 | eleqtrrd 2843 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ (0..^(♯‘𝑈))) |
155 | | wrddm 14108 |
. . . . . . . . . 10
⊢ (𝑈 ∈ Word 𝐷 → dom 𝑈 = (0..^(♯‘𝑈))) |
156 | 18, 155 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑈 = (0..^(♯‘𝑈))) |
157 | 154, 156 | eleqtrrd 2843 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ dom 𝑈) |
158 | | cycpmco2lem6.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ≠ 𝐼) |
159 | 1, 6, 2, 5, 13, 19, 20, 3 | cycpmco2lem2 31144 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈‘𝐸) = 𝐼) |
160 | 158, 57, 159 | 3netr4d 3021 |
. . . . . . . 8
⊢ (𝜑 → (𝑈‘(◡𝑈‘𝐾)) ≠ (𝑈‘𝐸)) |
161 | | f1fveq 7095 |
. . . . . . . . . 10
⊢ ((𝑈:dom 𝑈–1-1→𝐷 ∧ ((◡𝑈‘𝐾) ∈ dom 𝑈 ∧ 𝐸 ∈ dom 𝑈)) → ((𝑈‘(◡𝑈‘𝐾)) = (𝑈‘𝐸) ↔ (◡𝑈‘𝐾) = 𝐸)) |
162 | 161 | necon3bid 2988 |
. . . . . . . . 9
⊢ ((𝑈:dom 𝑈–1-1→𝐷 ∧ ((◡𝑈‘𝐾) ∈ dom 𝑈 ∧ 𝐸 ∈ dom 𝑈)) → ((𝑈‘(◡𝑈‘𝐾)) ≠ (𝑈‘𝐸) ↔ (◡𝑈‘𝐾) ≠ 𝐸)) |
163 | 162 | biimp3a 1471 |
. . . . . . . 8
⊢ ((𝑈:dom 𝑈–1-1→𝐷 ∧ ((◡𝑈‘𝐾) ∈ dom 𝑈 ∧ 𝐸 ∈ dom 𝑈) ∧ (𝑈‘(◡𝑈‘𝐾)) ≠ (𝑈‘𝐸)) → (◡𝑈‘𝐾) ≠ 𝐸) |
164 | 21, 133, 157, 160, 163 | syl121anc 1377 |
. . . . . . 7
⊢ (𝜑 → (◡𝑈‘𝐾) ≠ 𝐸) |
165 | | fzom1ne1 30873 |
. . . . . . 7
⊢ (((◡𝑈‘𝐾) ∈ (𝐸..^((♯‘𝑈) − 1)) ∧ (◡𝑈‘𝐾) ≠ 𝐸) → ((◡𝑈‘𝐾) − 1) ∈ (𝐸..^(((♯‘𝑈) − 1) − 1))) |
166 | 45, 164, 165 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 → ((◡𝑈‘𝐾) − 1) ∈ (𝐸..^(((♯‘𝑈) − 1) − 1))) |
167 | 130, 166 | sseldd 3918 |
. . . . 5
⊢ (𝜑 → ((◡𝑈‘𝐾) − 1) ∈
(0..^((♯‘𝑊)
− 1))) |
168 | 1, 2, 12, 29, 167 | cycpmfv1 31130 |
. . . 4
⊢ (𝜑 → ((𝑀‘𝑊)‘(𝑊‘((◡𝑈‘𝐾) − 1))) = (𝑊‘(((◡𝑈‘𝐾) − 1) + 1))) |
169 | 62, 64, 63 | subsub4d 11249 |
. . . . . . . . . 10
⊢ (𝜑 → (((◡𝑈‘𝐾) − 1) − 𝐸) = ((◡𝑈‘𝐾) − (1 + 𝐸))) |
170 | 169 | oveq1d 7249 |
. . . . . . . . 9
⊢ (𝜑 → ((((◡𝑈‘𝐾) − 1) − 𝐸) + (1 + 𝐸)) = (((◡𝑈‘𝐾) − (1 + 𝐸)) + (1 + 𝐸))) |
171 | 64, 63 | addcld 10881 |
. . . . . . . . . 10
⊢ (𝜑 → (1 + 𝐸) ∈ ℂ) |
172 | 62, 171 | npcand 11222 |
. . . . . . . . 9
⊢ (𝜑 → (((◡𝑈‘𝐾) − (1 + 𝐸)) + (1 + 𝐸)) = (◡𝑈‘𝐾)) |
173 | 170, 172 | eqtr2d 2780 |
. . . . . . . 8
⊢ (𝜑 → (◡𝑈‘𝐾) = ((((◡𝑈‘𝐾) − 1) − 𝐸) + (1 + 𝐸))) |
174 | 59, 173 | fveq12d 6745 |
. . . . . . 7
⊢ (𝜑 → (𝑈‘(◡𝑈‘𝐾)) = ((𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉)‘((((◡𝑈‘𝐾) − 1) − 𝐸) + (1 + 𝐸)))) |
175 | 63, 75 | pncan3d 11221 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 + ((♯‘𝑊) − 𝐸)) = (♯‘𝑊)) |
176 | 113, 134 | eqeltrd 2840 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((♯‘𝑈) − 1) ∈
ℤ) |
177 | | 1zzd 12237 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℤ) |
178 | 176, 177 | zsubcld 12316 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((♯‘𝑈) − 1) − 1) ∈
ℤ) |
179 | 178 | zred 12311 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((♯‘𝑈) − 1) − 1) ∈
ℝ) |
180 | 113, 141 | eqeltrd 2840 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((♯‘𝑈) − 1) ∈
ℝ) |
181 | 180 | ltm1d 11793 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((♯‘𝑈) − 1) − 1) <
((♯‘𝑈) −
1)) |
182 | 181, 113 | breqtrd 5095 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((♯‘𝑈) − 1) − 1) <
(♯‘𝑊)) |
183 | 179, 141,
182 | ltled 11009 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((♯‘𝑈) − 1) − 1) ≤
(♯‘𝑊)) |
184 | | eluz1 12471 |
. . . . . . . . . . . . . 14
⊢
((((♯‘𝑈)
− 1) − 1) ∈ ℤ → ((♯‘𝑊) ∈
(ℤ≥‘(((♯‘𝑈) − 1) − 1)) ↔
((♯‘𝑊) ∈
ℤ ∧ (((♯‘𝑈) − 1) − 1) ≤
(♯‘𝑊)))) |
185 | 184 | biimpar 481 |
. . . . . . . . . . . . 13
⊢
(((((♯‘𝑈) − 1) − 1) ∈ ℤ ∧
((♯‘𝑊) ∈
ℤ ∧ (((♯‘𝑈) − 1) − 1) ≤
(♯‘𝑊))) →
(♯‘𝑊) ∈
(ℤ≥‘(((♯‘𝑈) − 1) − 1))) |
186 | 178, 134,
183, 185 | syl12anc 837 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑊) ∈
(ℤ≥‘(((♯‘𝑈) − 1) − 1))) |
187 | 175, 186 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 + ((♯‘𝑊) − 𝐸)) ∈
(ℤ≥‘(((♯‘𝑈) − 1) − 1))) |
188 | | fzoss2 13299 |
. . . . . . . . . . 11
⊢ ((𝐸 + ((♯‘𝑊) − 𝐸)) ∈
(ℤ≥‘(((♯‘𝑈) − 1) − 1)) → (𝐸..^(((♯‘𝑈) − 1) − 1)) ⊆
(𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸)))) |
189 | 187, 188 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸..^(((♯‘𝑈) − 1) − 1)) ⊆ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸)))) |
190 | 189, 166 | sseldd 3918 |
. . . . . . . . 9
⊢ (𝜑 → ((◡𝑈‘𝐾) − 1) ∈ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸)))) |
191 | 134, 102 | zsubcld 12316 |
. . . . . . . . 9
⊢ (𝜑 → ((♯‘𝑊) − 𝐸) ∈ ℤ) |
192 | | fzosubel3 13332 |
. . . . . . . . 9
⊢ ((((◡𝑈‘𝐾) − 1) ∈ (𝐸..^(𝐸 + ((♯‘𝑊) − 𝐸))) ∧ ((♯‘𝑊) − 𝐸) ∈ ℤ) → (((◡𝑈‘𝐾) − 1) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸))) |
193 | 190, 191,
192 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → (((◡𝑈‘𝐾) − 1) − 𝐸) ∈ (0..^((♯‘𝑊) − 𝐸))) |
194 | 12, 72, 39, 15, 193, 124 | splfv3 30981 |
. . . . . . 7
⊢ (𝜑 → ((𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉)‘((((◡𝑈‘𝐾) − 1) − 𝐸) + (1 + 𝐸))) = (𝑊‘((((◡𝑈‘𝐾) − 1) − 𝐸) + 𝐸))) |
195 | 62, 64 | subcld 11218 |
. . . . . . . . 9
⊢ (𝜑 → ((◡𝑈‘𝐾) − 1) ∈
ℂ) |
196 | 195, 63 | npcand 11222 |
. . . . . . . 8
⊢ (𝜑 → ((((◡𝑈‘𝐾) − 1) − 𝐸) + 𝐸) = ((◡𝑈‘𝐾) − 1)) |
197 | 196 | fveq2d 6742 |
. . . . . . 7
⊢ (𝜑 → (𝑊‘((((◡𝑈‘𝐾) − 1) − 𝐸) + 𝐸)) = (𝑊‘((◡𝑈‘𝐾) − 1))) |
198 | 174, 194,
197 | 3eqtrd 2783 |
. . . . . 6
⊢ (𝜑 → (𝑈‘(◡𝑈‘𝐾)) = (𝑊‘((◡𝑈‘𝐾) − 1))) |
199 | 198, 57 | eqtr3d 2781 |
. . . . 5
⊢ (𝜑 → (𝑊‘((◡𝑈‘𝐾) − 1)) = 𝐾) |
200 | 199 | fveq2d 6742 |
. . . 4
⊢ (𝜑 → ((𝑀‘𝑊)‘(𝑊‘((◡𝑈‘𝐾) − 1))) = ((𝑀‘𝑊)‘𝐾)) |
201 | 62, 64 | npcand 11222 |
. . . . 5
⊢ (𝜑 → (((◡𝑈‘𝐾) − 1) + 1) = (◡𝑈‘𝐾)) |
202 | 201 | fveq2d 6742 |
. . . 4
⊢ (𝜑 → (𝑊‘(((◡𝑈‘𝐾) − 1) + 1)) = (𝑊‘(◡𝑈‘𝐾))) |
203 | 168, 200,
202 | 3eqtr3d 2787 |
. . 3
⊢ (𝜑 → ((𝑀‘𝑊)‘𝐾) = (𝑊‘(◡𝑈‘𝐾))) |
204 | 70, 125, 203 | 3eqtr4rd 2790 |
. 2
⊢ (𝜑 → ((𝑀‘𝑊)‘𝐾) = ((𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉)‘(((◡𝑈‘𝐾) − 𝐸) + (1 + 𝐸)))) |
205 | 68, 204 | eqtr4d 2782 |
1
⊢ (𝜑 → ((𝑀‘𝑈)‘𝐾) = ((𝑀‘𝑊)‘𝐾)) |