Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem3 Structured version   Visualization version   GIF version

Theorem cycpmco2lem3 30820
Description: Lemma for cycpmco2 30825. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2lem3 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))

Proof of Theorem cycpmco2lem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4007 . . . . 5 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
2 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
3 cycpmco2.d . . . . . . . 8 (𝜑𝐷𝑉)
4 cycpmco2.c . . . . . . . . 9 𝑀 = (toCyc‘𝐷)
5 cycpmco2.s . . . . . . . . 9 𝑆 = (SymGrp‘𝐷)
6 eqid 2798 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
74, 5, 6tocycf 30809 . . . . . . . 8 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
83, 7syl 17 . . . . . . 7 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
98fdmd 6497 . . . . . 6 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
102, 9eleqtrd 2892 . . . . 5 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
111, 10sseldi 3913 . . . 4 (𝜑𝑊 ∈ Word 𝐷)
12 lencl 13876 . . . 4 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
1311, 12syl 17 . . 3 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1413nn0cnd 11945 . 2 (𝜑 → (♯‘𝑊) ∈ ℂ)
15 1cnd 10625 . 2 (𝜑 → 1 ∈ ℂ)
16 cycpmco2.1 . . . . . . 7 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
17 cycpmco2.e . . . . . . . . 9 𝐸 = ((𝑊𝐽) + 1)
18 ovexd 7170 . . . . . . . . 9 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
1917, 18eqeltrid 2894 . . . . . . . 8 (𝜑𝐸 ∈ V)
20 cycpmco2.i . . . . . . . . . 10 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
2120eldifad 3893 . . . . . . . . 9 (𝜑𝐼𝐷)
2221s1cld 13948 . . . . . . . 8 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
23 splval 14104 . . . . . . . 8 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
242, 19, 19, 22, 23syl13anc 1369 . . . . . . 7 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
2516, 24syl5eq 2845 . . . . . 6 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
2625fveq2d 6649 . . . . 5 (𝜑 → (♯‘𝑈) = (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
27 pfxcl 14030 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2811, 27syl 17 . . . . . . 7 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
29 ccatcl 13917 . . . . . . 7 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
3028, 22, 29syl2anc 587 . . . . . 6 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
31 swrdcl 13998 . . . . . . 7 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
3211, 31syl 17 . . . . . 6 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
33 ccatlen 13918 . . . . . 6 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
3430, 32, 33syl2anc 587 . . . . 5 (𝜑 → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
35 ccatws1len 13965 . . . . . . . 8 ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
3628, 35syl 17 . . . . . . 7 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
37 id 22 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊𝑤 = 𝑊)
38 dmeq 5736 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
39 eqidd 2799 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊𝐷 = 𝐷)
4037, 38, 39f1eq123d 6583 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
4140elrab 3628 . . . . . . . . . . . . . . . 16 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4210, 41sylib 221 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
43 f1cnv 6613 . . . . . . . . . . . . . . 15 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
4442, 43simpl2im 507 . . . . . . . . . . . . . 14 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
45 f1of 6590 . . . . . . . . . . . . . 14 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4644, 45syl 17 . . . . . . . . . . . . 13 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
47 cycpmco2.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ran 𝑊)
4846, 47ffvelrnd 6829 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
49 wrddm 13864 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
5011, 49syl 17 . . . . . . . . . . . 12 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
5148, 50eleqtrd 2892 . . . . . . . . . . 11 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
52 fzofzp1 13129 . . . . . . . . . . 11 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5351, 52syl 17 . . . . . . . . . 10 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5417, 53eqeltrid 2894 . . . . . . . . 9 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
55 pfxlen 14036 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5611, 54, 55syl2anc 587 . . . . . . . 8 (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5756oveq1d 7150 . . . . . . 7 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1))
5836, 57eqtrd 2833 . . . . . 6 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = (𝐸 + 1))
59 nn0fz0 13000 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6013, 59sylib 221 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
61 swrdlen 14000 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6211, 54, 60, 61syl3anc 1368 . . . . . 6 (𝜑 → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6358, 62oveq12d 7153 . . . . 5 (𝜑 → ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
6426, 34, 633eqtrd 2837 . . . 4 (𝜑 → (♯‘𝑈) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
65 fz0ssnn0 12997 . . . . . . . . 9 (0...(♯‘𝑊)) ⊆ ℕ0
6665, 54sseldi 3913 . . . . . . . 8 (𝜑𝐸 ∈ ℕ0)
6766nn0zd 12073 . . . . . . 7 (𝜑𝐸 ∈ ℤ)
6867peano2zd 12078 . . . . . 6 (𝜑 → (𝐸 + 1) ∈ ℤ)
6968zcnd 12076 . . . . 5 (𝜑 → (𝐸 + 1) ∈ ℂ)
7066nn0cnd 11945 . . . . 5 (𝜑𝐸 ∈ ℂ)
7169, 14, 70addsubassd 11006 . . . 4 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
7270, 15, 14addassd 10652 . . . . 5 (𝜑 → ((𝐸 + 1) + (♯‘𝑊)) = (𝐸 + (1 + (♯‘𝑊))))
7372oveq1d 7150 . . . 4 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7464, 71, 733eqtr2d 2839 . . 3 (𝜑 → (♯‘𝑈) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7515, 14addcld 10649 . . . 4 (𝜑 → (1 + (♯‘𝑊)) ∈ ℂ)
7670, 75pncan2d 10988 . . 3 (𝜑 → ((𝐸 + (1 + (♯‘𝑊))) − 𝐸) = (1 + (♯‘𝑊)))
7715, 14addcomd 10831 . . 3 (𝜑 → (1 + (♯‘𝑊)) = ((♯‘𝑊) + 1))
7874, 76, 773eqtrd 2837 . 2 (𝜑 → (♯‘𝑈) = ((♯‘𝑊) + 1))
7914, 15, 78mvrraddd 11041 1 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cdif 3878  cop 4531  cotp 4533  ccnv 5518  dom cdm 5519  ran crn 5520  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  0cn0 11885  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857   ++ cconcat 13913  ⟨“cs1 13940   substr csubstr 13993   prefix cpfx 14023   splice csplice 14102  Basecbs 16475  SymGrpcsymg 18487  toCycctocyc 30798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-csh 14142  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-efmnd 18026  df-symg 18488  df-tocyc 30799
This theorem is referenced by:  cycpmco2lem4  30821  cycpmco2lem5  30822  cycpmco2lem7  30824
  Copyright terms: Public domain W3C validator