Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem3 Structured version   Visualization version   GIF version

Theorem cycpmco2lem3 33149
Description: Lemma for cycpmco2 33154. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2lem3 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))

Proof of Theorem cycpmco2lem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4079 . . . . 5 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
2 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
3 cycpmco2.d . . . . . . . 8 (𝜑𝐷𝑉)
4 cycpmco2.c . . . . . . . . 9 𝑀 = (toCyc‘𝐷)
5 cycpmco2.s . . . . . . . . 9 𝑆 = (SymGrp‘𝐷)
6 eqid 2736 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
74, 5, 6tocycf 33138 . . . . . . . 8 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
83, 7syl 17 . . . . . . 7 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
98fdmd 6745 . . . . . 6 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
102, 9eleqtrd 2842 . . . . 5 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
111, 10sselid 3980 . . . 4 (𝜑𝑊 ∈ Word 𝐷)
12 lencl 14572 . . . 4 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
1311, 12syl 17 . . 3 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1413nn0cnd 12591 . 2 (𝜑 → (♯‘𝑊) ∈ ℂ)
15 1cnd 11257 . 2 (𝜑 → 1 ∈ ℂ)
16 cycpmco2.1 . . . . . . 7 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
17 cycpmco2.e . . . . . . . . 9 𝐸 = ((𝑊𝐽) + 1)
18 ovexd 7467 . . . . . . . . 9 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
1917, 18eqeltrid 2844 . . . . . . . 8 (𝜑𝐸 ∈ V)
20 cycpmco2.i . . . . . . . . . 10 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
2120eldifad 3962 . . . . . . . . 9 (𝜑𝐼𝐷)
2221s1cld 14642 . . . . . . . 8 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
23 splval 14790 . . . . . . . 8 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
242, 19, 19, 22, 23syl13anc 1373 . . . . . . 7 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
2516, 24eqtrid 2788 . . . . . 6 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
2625fveq2d 6909 . . . . 5 (𝜑 → (♯‘𝑈) = (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
27 pfxcl 14716 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2811, 27syl 17 . . . . . . 7 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
29 ccatcl 14613 . . . . . . 7 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
3028, 22, 29syl2anc 584 . . . . . 6 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
31 swrdcl 14684 . . . . . . 7 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
3211, 31syl 17 . . . . . 6 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
33 ccatlen 14614 . . . . . 6 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
3430, 32, 33syl2anc 584 . . . . 5 (𝜑 → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
35 ccatws1len 14659 . . . . . . . 8 ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
3628, 35syl 17 . . . . . . 7 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
37 id 22 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊𝑤 = 𝑊)
38 dmeq 5913 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
39 eqidd 2737 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊𝐷 = 𝐷)
4037, 38, 39f1eq123d 6839 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
4140elrab 3691 . . . . . . . . . . . . . . . 16 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4210, 41sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
43 f1cnv 6871 . . . . . . . . . . . . . . 15 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
4442, 43simpl2im 503 . . . . . . . . . . . . . 14 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
45 f1of 6847 . . . . . . . . . . . . . 14 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4644, 45syl 17 . . . . . . . . . . . . 13 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
47 cycpmco2.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ran 𝑊)
4846, 47ffvelcdmd 7104 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
49 wrddm 14560 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
5011, 49syl 17 . . . . . . . . . . . 12 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
5148, 50eleqtrd 2842 . . . . . . . . . . 11 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
52 fzofzp1 13804 . . . . . . . . . . 11 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5351, 52syl 17 . . . . . . . . . 10 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5417, 53eqeltrid 2844 . . . . . . . . 9 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
55 pfxlen 14722 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5611, 54, 55syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5756oveq1d 7447 . . . . . . 7 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1))
5836, 57eqtrd 2776 . . . . . 6 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = (𝐸 + 1))
59 nn0fz0 13666 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6013, 59sylib 218 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
61 swrdlen 14686 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6211, 54, 60, 61syl3anc 1372 . . . . . 6 (𝜑 → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6358, 62oveq12d 7450 . . . . 5 (𝜑 → ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
6426, 34, 633eqtrd 2780 . . . 4 (𝜑 → (♯‘𝑈) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
65 fz0ssnn0 13663 . . . . . . . . 9 (0...(♯‘𝑊)) ⊆ ℕ0
6665, 54sselid 3980 . . . . . . . 8 (𝜑𝐸 ∈ ℕ0)
6766nn0zd 12641 . . . . . . 7 (𝜑𝐸 ∈ ℤ)
6867peano2zd 12727 . . . . . 6 (𝜑 → (𝐸 + 1) ∈ ℤ)
6968zcnd 12725 . . . . 5 (𝜑 → (𝐸 + 1) ∈ ℂ)
7066nn0cnd 12591 . . . . 5 (𝜑𝐸 ∈ ℂ)
7169, 14, 70addsubassd 11641 . . . 4 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
7270, 15, 14addassd 11284 . . . . 5 (𝜑 → ((𝐸 + 1) + (♯‘𝑊)) = (𝐸 + (1 + (♯‘𝑊))))
7372oveq1d 7447 . . . 4 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7464, 71, 733eqtr2d 2782 . . 3 (𝜑 → (♯‘𝑈) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7515, 14addcld 11281 . . . 4 (𝜑 → (1 + (♯‘𝑊)) ∈ ℂ)
7670, 75pncan2d 11623 . . 3 (𝜑 → ((𝐸 + (1 + (♯‘𝑊))) − 𝐸) = (1 + (♯‘𝑊)))
7715, 14addcomd 11464 . . 3 (𝜑 → (1 + (♯‘𝑊)) = ((♯‘𝑊) + 1))
7874, 76, 773eqtrd 2780 . 2 (𝜑 → (♯‘𝑈) = ((♯‘𝑊) + 1))
7914, 15, 78mvrraddd 11676 1 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  cdif 3947  cop 4631  cotp 4633  ccnv 5683  dom cdm 5684  ran crn 5685  wf 6556  1-1wf1 6557  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159  cmin 11493  0cn0 12528  ...cfz 13548  ..^cfzo 13695  chash 14370  Word cword 14553   ++ cconcat 14609  ⟨“cs1 14634   substr csubstr 14679   prefix cpfx 14709   splice csplice 14788  Basecbs 17248  SymGrpcsymg 19387  toCycctocyc 33127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-splice 14789  df-csh 14828  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-tset 17317  df-efmnd 18883  df-symg 19388  df-tocyc 33128
This theorem is referenced by:  cycpmco2lem4  33150  cycpmco2lem5  33151  cycpmco2lem7  33153
  Copyright terms: Public domain W3C validator