Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem3 Structured version   Visualization version   GIF version

Theorem cycpmco2lem3 30972
Description: Lemma for cycpmco2 30977. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2lem3 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))

Proof of Theorem cycpmco2lem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3969 . . . . 5 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
2 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
3 cycpmco2.d . . . . . . . 8 (𝜑𝐷𝑉)
4 cycpmco2.c . . . . . . . . 9 𝑀 = (toCyc‘𝐷)
5 cycpmco2.s . . . . . . . . 9 𝑆 = (SymGrp‘𝐷)
6 eqid 2738 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
74, 5, 6tocycf 30961 . . . . . . . 8 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
83, 7syl 17 . . . . . . 7 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
98fdmd 6515 . . . . . 6 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
102, 9eleqtrd 2835 . . . . 5 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
111, 10sseldi 3875 . . . 4 (𝜑𝑊 ∈ Word 𝐷)
12 lencl 13974 . . . 4 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
1311, 12syl 17 . . 3 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1413nn0cnd 12038 . 2 (𝜑 → (♯‘𝑊) ∈ ℂ)
15 1cnd 10714 . 2 (𝜑 → 1 ∈ ℂ)
16 cycpmco2.1 . . . . . . 7 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
17 cycpmco2.e . . . . . . . . 9 𝐸 = ((𝑊𝐽) + 1)
18 ovexd 7205 . . . . . . . . 9 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
1917, 18eqeltrid 2837 . . . . . . . 8 (𝜑𝐸 ∈ V)
20 cycpmco2.i . . . . . . . . . 10 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
2120eldifad 3855 . . . . . . . . 9 (𝜑𝐼𝐷)
2221s1cld 14046 . . . . . . . 8 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
23 splval 14202 . . . . . . . 8 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
242, 19, 19, 22, 23syl13anc 1373 . . . . . . 7 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
2516, 24syl5eq 2785 . . . . . 6 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
2625fveq2d 6678 . . . . 5 (𝜑 → (♯‘𝑈) = (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
27 pfxcl 14128 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2811, 27syl 17 . . . . . . 7 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
29 ccatcl 14015 . . . . . . 7 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
3028, 22, 29syl2anc 587 . . . . . 6 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
31 swrdcl 14096 . . . . . . 7 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
3211, 31syl 17 . . . . . 6 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
33 ccatlen 14016 . . . . . 6 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
3430, 32, 33syl2anc 587 . . . . 5 (𝜑 → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
35 ccatws1len 14063 . . . . . . . 8 ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
3628, 35syl 17 . . . . . . 7 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
37 id 22 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊𝑤 = 𝑊)
38 dmeq 5746 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
39 eqidd 2739 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊𝐷 = 𝐷)
4037, 38, 39f1eq123d 6610 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
4140elrab 3588 . . . . . . . . . . . . . . . 16 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4210, 41sylib 221 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
43 f1cnv 6641 . . . . . . . . . . . . . . 15 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
4442, 43simpl2im 507 . . . . . . . . . . . . . 14 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
45 f1of 6618 . . . . . . . . . . . . . 14 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4644, 45syl 17 . . . . . . . . . . . . 13 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
47 cycpmco2.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ran 𝑊)
4846, 47ffvelrnd 6862 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
49 wrddm 13962 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
5011, 49syl 17 . . . . . . . . . . . 12 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
5148, 50eleqtrd 2835 . . . . . . . . . . 11 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
52 fzofzp1 13225 . . . . . . . . . . 11 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5351, 52syl 17 . . . . . . . . . 10 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5417, 53eqeltrid 2837 . . . . . . . . 9 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
55 pfxlen 14134 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5611, 54, 55syl2anc 587 . . . . . . . 8 (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5756oveq1d 7185 . . . . . . 7 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1))
5836, 57eqtrd 2773 . . . . . 6 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = (𝐸 + 1))
59 nn0fz0 13096 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6013, 59sylib 221 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
61 swrdlen 14098 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6211, 54, 60, 61syl3anc 1372 . . . . . 6 (𝜑 → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6358, 62oveq12d 7188 . . . . 5 (𝜑 → ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
6426, 34, 633eqtrd 2777 . . . 4 (𝜑 → (♯‘𝑈) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
65 fz0ssnn0 13093 . . . . . . . . 9 (0...(♯‘𝑊)) ⊆ ℕ0
6665, 54sseldi 3875 . . . . . . . 8 (𝜑𝐸 ∈ ℕ0)
6766nn0zd 12166 . . . . . . 7 (𝜑𝐸 ∈ ℤ)
6867peano2zd 12171 . . . . . 6 (𝜑 → (𝐸 + 1) ∈ ℤ)
6968zcnd 12169 . . . . 5 (𝜑 → (𝐸 + 1) ∈ ℂ)
7066nn0cnd 12038 . . . . 5 (𝜑𝐸 ∈ ℂ)
7169, 14, 70addsubassd 11095 . . . 4 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
7270, 15, 14addassd 10741 . . . . 5 (𝜑 → ((𝐸 + 1) + (♯‘𝑊)) = (𝐸 + (1 + (♯‘𝑊))))
7372oveq1d 7185 . . . 4 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7464, 71, 733eqtr2d 2779 . . 3 (𝜑 → (♯‘𝑈) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7515, 14addcld 10738 . . . 4 (𝜑 → (1 + (♯‘𝑊)) ∈ ℂ)
7670, 75pncan2d 11077 . . 3 (𝜑 → ((𝐸 + (1 + (♯‘𝑊))) − 𝐸) = (1 + (♯‘𝑊)))
7715, 14addcomd 10920 . . 3 (𝜑 → (1 + (♯‘𝑊)) = ((♯‘𝑊) + 1))
7874, 76, 773eqtrd 2777 . 2 (𝜑 → (♯‘𝑈) = ((♯‘𝑊) + 1))
7914, 15, 78mvrraddd 11130 1 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  {crab 3057  Vcvv 3398  cdif 3840  cop 4522  cotp 4524  ccnv 5524  dom cdm 5525  ran crn 5526  wf 6335  1-1wf1 6336  1-1-ontowf1o 6338  cfv 6339  (class class class)co 7170  0cc0 10615  1c1 10616   + caddc 10618  cmin 10948  0cn0 11976  ...cfz 12981  ..^cfzo 13124  chash 13782  Word cword 13955   ++ cconcat 14011  ⟨“cs1 14038   substr csubstr 14091   prefix cpfx 14121   splice csplice 14200  Basecbs 16586  SymGrpcsymg 18613  toCycctocyc 30950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-ot 4525  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-hash 13783  df-word 13956  df-concat 14012  df-s1 14039  df-substr 14092  df-pfx 14122  df-splice 14201  df-csh 14240  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-tset 16687  df-efmnd 18150  df-symg 18614  df-tocyc 30951
This theorem is referenced by:  cycpmco2lem4  30973  cycpmco2lem5  30974  cycpmco2lem7  30976
  Copyright terms: Public domain W3C validator