Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem3 Structured version   Visualization version   GIF version

Theorem cycpmco2lem3 33092
Description: Lemma for cycpmco2 33097. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2lem3 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))

Proof of Theorem cycpmco2lem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4046 . . . . 5 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
2 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
3 cycpmco2.d . . . . . . . 8 (𝜑𝐷𝑉)
4 cycpmco2.c . . . . . . . . 9 𝑀 = (toCyc‘𝐷)
5 cycpmco2.s . . . . . . . . 9 𝑆 = (SymGrp‘𝐷)
6 eqid 2730 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
74, 5, 6tocycf 33081 . . . . . . . 8 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
83, 7syl 17 . . . . . . 7 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
98fdmd 6701 . . . . . 6 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
102, 9eleqtrd 2831 . . . . 5 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
111, 10sselid 3947 . . . 4 (𝜑𝑊 ∈ Word 𝐷)
12 lencl 14505 . . . 4 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
1311, 12syl 17 . . 3 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1413nn0cnd 12512 . 2 (𝜑 → (♯‘𝑊) ∈ ℂ)
15 1cnd 11176 . 2 (𝜑 → 1 ∈ ℂ)
16 cycpmco2.1 . . . . . . 7 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
17 cycpmco2.e . . . . . . . . 9 𝐸 = ((𝑊𝐽) + 1)
18 ovexd 7425 . . . . . . . . 9 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
1917, 18eqeltrid 2833 . . . . . . . 8 (𝜑𝐸 ∈ V)
20 cycpmco2.i . . . . . . . . . 10 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
2120eldifad 3929 . . . . . . . . 9 (𝜑𝐼𝐷)
2221s1cld 14575 . . . . . . . 8 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
23 splval 14723 . . . . . . . 8 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
242, 19, 19, 22, 23syl13anc 1374 . . . . . . 7 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
2516, 24eqtrid 2777 . . . . . 6 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
2625fveq2d 6865 . . . . 5 (𝜑 → (♯‘𝑈) = (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
27 pfxcl 14649 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2811, 27syl 17 . . . . . . 7 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
29 ccatcl 14546 . . . . . . 7 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
3028, 22, 29syl2anc 584 . . . . . 6 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
31 swrdcl 14617 . . . . . . 7 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
3211, 31syl 17 . . . . . 6 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
33 ccatlen 14547 . . . . . 6 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
3430, 32, 33syl2anc 584 . . . . 5 (𝜑 → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
35 ccatws1len 14592 . . . . . . . 8 ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
3628, 35syl 17 . . . . . . 7 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
37 id 22 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊𝑤 = 𝑊)
38 dmeq 5870 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
39 eqidd 2731 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊𝐷 = 𝐷)
4037, 38, 39f1eq123d 6795 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
4140elrab 3662 . . . . . . . . . . . . . . . 16 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4210, 41sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
43 f1cnv 6827 . . . . . . . . . . . . . . 15 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
4442, 43simpl2im 503 . . . . . . . . . . . . . 14 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
45 f1of 6803 . . . . . . . . . . . . . 14 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4644, 45syl 17 . . . . . . . . . . . . 13 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
47 cycpmco2.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ran 𝑊)
4846, 47ffvelcdmd 7060 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
49 wrddm 14493 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
5011, 49syl 17 . . . . . . . . . . . 12 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
5148, 50eleqtrd 2831 . . . . . . . . . . 11 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
52 fzofzp1 13732 . . . . . . . . . . 11 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5351, 52syl 17 . . . . . . . . . 10 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5417, 53eqeltrid 2833 . . . . . . . . 9 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
55 pfxlen 14655 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5611, 54, 55syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5756oveq1d 7405 . . . . . . 7 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1))
5836, 57eqtrd 2765 . . . . . 6 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = (𝐸 + 1))
59 nn0fz0 13593 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6013, 59sylib 218 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
61 swrdlen 14619 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6211, 54, 60, 61syl3anc 1373 . . . . . 6 (𝜑 → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6358, 62oveq12d 7408 . . . . 5 (𝜑 → ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
6426, 34, 633eqtrd 2769 . . . 4 (𝜑 → (♯‘𝑈) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
65 fz0ssnn0 13590 . . . . . . . . 9 (0...(♯‘𝑊)) ⊆ ℕ0
6665, 54sselid 3947 . . . . . . . 8 (𝜑𝐸 ∈ ℕ0)
6766nn0zd 12562 . . . . . . 7 (𝜑𝐸 ∈ ℤ)
6867peano2zd 12648 . . . . . 6 (𝜑 → (𝐸 + 1) ∈ ℤ)
6968zcnd 12646 . . . . 5 (𝜑 → (𝐸 + 1) ∈ ℂ)
7066nn0cnd 12512 . . . . 5 (𝜑𝐸 ∈ ℂ)
7169, 14, 70addsubassd 11560 . . . 4 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
7270, 15, 14addassd 11203 . . . . 5 (𝜑 → ((𝐸 + 1) + (♯‘𝑊)) = (𝐸 + (1 + (♯‘𝑊))))
7372oveq1d 7405 . . . 4 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7464, 71, 733eqtr2d 2771 . . 3 (𝜑 → (♯‘𝑈) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7515, 14addcld 11200 . . . 4 (𝜑 → (1 + (♯‘𝑊)) ∈ ℂ)
7670, 75pncan2d 11542 . . 3 (𝜑 → ((𝐸 + (1 + (♯‘𝑊))) − 𝐸) = (1 + (♯‘𝑊)))
7715, 14addcomd 11383 . . 3 (𝜑 → (1 + (♯‘𝑊)) = ((♯‘𝑊) + 1))
7874, 76, 773eqtrd 2769 . 2 (𝜑 → (♯‘𝑈) = ((♯‘𝑊) + 1))
7914, 15, 78mvrraddd 11597 1 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cdif 3914  cop 4598  cotp 4600  ccnv 5640  dom cdm 5641  ran crn 5642  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  0cn0 12449  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542  ⟨“cs1 14567   substr csubstr 14612   prefix cpfx 14642   splice csplice 14721  Basecbs 17186  SymGrpcsymg 19306  toCycctocyc 33070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-csh 14761  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-efmnd 18803  df-symg 19307  df-tocyc 33071
This theorem is referenced by:  cycpmco2lem4  33093  cycpmco2lem5  33094  cycpmco2lem7  33096
  Copyright terms: Public domain W3C validator