Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem3 Structured version   Visualization version   GIF version

Theorem cycpmco2lem3 33121
Description: Lemma for cycpmco2 33126. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2lem3 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))

Proof of Theorem cycpmco2lem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4103 . . . . 5 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
2 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
3 cycpmco2.d . . . . . . . 8 (𝜑𝐷𝑉)
4 cycpmco2.c . . . . . . . . 9 𝑀 = (toCyc‘𝐷)
5 cycpmco2.s . . . . . . . . 9 𝑆 = (SymGrp‘𝐷)
6 eqid 2740 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
74, 5, 6tocycf 33110 . . . . . . . 8 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
83, 7syl 17 . . . . . . 7 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
98fdmd 6757 . . . . . 6 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
102, 9eleqtrd 2846 . . . . 5 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
111, 10sselid 4006 . . . 4 (𝜑𝑊 ∈ Word 𝐷)
12 lencl 14581 . . . 4 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
1311, 12syl 17 . . 3 (𝜑 → (♯‘𝑊) ∈ ℕ0)
1413nn0cnd 12615 . 2 (𝜑 → (♯‘𝑊) ∈ ℂ)
15 1cnd 11285 . 2 (𝜑 → 1 ∈ ℂ)
16 cycpmco2.1 . . . . . . 7 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
17 cycpmco2.e . . . . . . . . 9 𝐸 = ((𝑊𝐽) + 1)
18 ovexd 7483 . . . . . . . . 9 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
1917, 18eqeltrid 2848 . . . . . . . 8 (𝜑𝐸 ∈ V)
20 cycpmco2.i . . . . . . . . . 10 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
2120eldifad 3988 . . . . . . . . 9 (𝜑𝐼𝐷)
2221s1cld 14651 . . . . . . . 8 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
23 splval 14799 . . . . . . . 8 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
242, 19, 19, 22, 23syl13anc 1372 . . . . . . 7 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
2516, 24eqtrid 2792 . . . . . 6 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
2625fveq2d 6924 . . . . 5 (𝜑 → (♯‘𝑈) = (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
27 pfxcl 14725 . . . . . . . 8 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2811, 27syl 17 . . . . . . 7 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
29 ccatcl 14622 . . . . . . 7 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
3028, 22, 29syl2anc 583 . . . . . 6 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
31 swrdcl 14693 . . . . . . 7 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
3211, 31syl 17 . . . . . 6 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
33 ccatlen 14623 . . . . . 6 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷) → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
3430, 32, 33syl2anc 583 . . . . 5 (𝜑 → (♯‘(((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
35 ccatws1len 14668 . . . . . . . 8 ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
3628, 35syl 17 . . . . . . 7 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
37 id 22 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊𝑤 = 𝑊)
38 dmeq 5928 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
39 eqidd 2741 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊𝐷 = 𝐷)
4037, 38, 39f1eq123d 6854 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
4140elrab 3708 . . . . . . . . . . . . . . . 16 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
4210, 41sylib 218 . . . . . . . . . . . . . . 15 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
43 f1cnv 6886 . . . . . . . . . . . . . . 15 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
4442, 43simpl2im 503 . . . . . . . . . . . . . 14 (𝜑𝑊:ran 𝑊1-1-onto→dom 𝑊)
45 f1of 6862 . . . . . . . . . . . . . 14 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
4644, 45syl 17 . . . . . . . . . . . . 13 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
47 cycpmco2.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ran 𝑊)
4846, 47ffvelcdmd 7119 . . . . . . . . . . . 12 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
49 wrddm 14569 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
5011, 49syl 17 . . . . . . . . . . . 12 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
5148, 50eleqtrd 2846 . . . . . . . . . . 11 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
52 fzofzp1 13814 . . . . . . . . . . 11 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5351, 52syl 17 . . . . . . . . . 10 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
5417, 53eqeltrid 2848 . . . . . . . . 9 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
55 pfxlen 14731 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5611, 54, 55syl2anc 583 . . . . . . . 8 (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5756oveq1d 7463 . . . . . . 7 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1))
5836, 57eqtrd 2780 . . . . . 6 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = (𝐸 + 1))
59 nn0fz0 13682 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6013, 59sylib 218 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
61 swrdlen 14695 . . . . . . 7 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6211, 54, 60, 61syl3anc 1371 . . . . . 6 (𝜑 → (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((♯‘𝑊) − 𝐸))
6358, 62oveq12d 7466 . . . . 5 (𝜑 → ((♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) + (♯‘(𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
6426, 34, 633eqtrd 2784 . . . 4 (𝜑 → (♯‘𝑈) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
65 fz0ssnn0 13679 . . . . . . . . 9 (0...(♯‘𝑊)) ⊆ ℕ0
6665, 54sselid 4006 . . . . . . . 8 (𝜑𝐸 ∈ ℕ0)
6766nn0zd 12665 . . . . . . 7 (𝜑𝐸 ∈ ℤ)
6867peano2zd 12750 . . . . . 6 (𝜑 → (𝐸 + 1) ∈ ℤ)
6968zcnd 12748 . . . . 5 (𝜑 → (𝐸 + 1) ∈ ℂ)
7066nn0cnd 12615 . . . . 5 (𝜑𝐸 ∈ ℂ)
7169, 14, 70addsubassd 11667 . . . 4 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + 1) + ((♯‘𝑊) − 𝐸)))
7270, 15, 14addassd 11312 . . . . 5 (𝜑 → ((𝐸 + 1) + (♯‘𝑊)) = (𝐸 + (1 + (♯‘𝑊))))
7372oveq1d 7463 . . . 4 (𝜑 → (((𝐸 + 1) + (♯‘𝑊)) − 𝐸) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7464, 71, 733eqtr2d 2786 . . 3 (𝜑 → (♯‘𝑈) = ((𝐸 + (1 + (♯‘𝑊))) − 𝐸))
7515, 14addcld 11309 . . . 4 (𝜑 → (1 + (♯‘𝑊)) ∈ ℂ)
7670, 75pncan2d 11649 . . 3 (𝜑 → ((𝐸 + (1 + (♯‘𝑊))) − 𝐸) = (1 + (♯‘𝑊)))
7715, 14addcomd 11492 . . 3 (𝜑 → (1 + (♯‘𝑊)) = ((♯‘𝑊) + 1))
7874, 76, 773eqtrd 2784 . 2 (𝜑 → (♯‘𝑈) = ((♯‘𝑊) + 1))
7914, 15, 78mvrraddd 11702 1 (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cdif 3973  cop 4654  cotp 4656  ccnv 5699  dom cdm 5700  ran crn 5701  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  0cn0 12553  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643   substr csubstr 14688   prefix cpfx 14718   splice csplice 14797  Basecbs 17258  SymGrpcsymg 19410  toCycctocyc 33099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-csh 14837  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-tset 17330  df-efmnd 18904  df-symg 19411  df-tocyc 33100
This theorem is referenced by:  cycpmco2lem4  33122  cycpmco2lem5  33123  cycpmco2lem7  33125
  Copyright terms: Public domain W3C validator