Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem2 Structured version   Visualization version   GIF version

Theorem cycpmco2lem2 33091
Description: Lemma for cycpmco2 33097. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2lem2 (𝜑 → (𝑈𝐸) = 𝐼)

Proof of Theorem cycpmco2lem2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
2 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
3 cycpmco2.e . . . . . . 7 𝐸 = ((𝑊𝐽) + 1)
4 ovexd 7381 . . . . . . 7 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
53, 4eqeltrid 2835 . . . . . 6 (𝜑𝐸 ∈ V)
6 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
76eldifad 3914 . . . . . . 7 (𝜑𝐼𝐷)
87s1cld 14508 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
9 splval 14655 . . . . . 6 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
102, 5, 5, 8, 9syl13anc 1374 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
111, 10eqtrid 2778 . . . 4 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1211fveq1d 6824 . . 3 (𝜑 → (𝑈𝐸) = ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))‘𝐸))
13 ssrab2 4030 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
14 cycpmco2.d . . . . . . . . . 10 (𝜑𝐷𝑉)
15 cycpmco2.c . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
16 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
17 eqid 2731 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
1815, 16, 17tocycf 33081 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
1914, 18syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2019fdmd 6661 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
212, 20eleqtrd 2833 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2213, 21sselid 3932 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
23 pfxcl 14582 . . . . . 6 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2422, 23syl 17 . . . . 5 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
25 ccatcl 14478 . . . . 5 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
2624, 8, 25syl2anc 584 . . . 4 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
27 swrdcl 14550 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
2822, 27syl 17 . . . 4 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
29 fz0ssnn0 13519 . . . . . . 7 (0...(♯‘𝑊)) ⊆ ℕ0
30 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝑤 = 𝑊)
31 dmeq 5843 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
32 eqidd 2732 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝐷 = 𝐷)
3330, 31, 32f1eq123d 6755 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
3433elrab 3647 . . . . . . . . . . . . . 14 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
3521, 34sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
3635simprd 495 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
37 f1cnv 6787 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
38 f1of 6763 . . . . . . . . . . . 12 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3936, 37, 383syl 18 . . . . . . . . . . 11 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
40 cycpmco2.j . . . . . . . . . . 11 (𝜑𝐽 ∈ ran 𝑊)
4139, 40ffvelcdmd 7018 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
42 wrddm 14425 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
4322, 42syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
4441, 43eleqtrd 2833 . . . . . . . . 9 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
45 fzofzp1 13661 . . . . . . . . 9 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
4644, 45syl 17 . . . . . . . 8 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
473, 46eqeltrid 2835 . . . . . . 7 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
4829, 47sselid 3932 . . . . . 6 (𝜑𝐸 ∈ ℕ0)
49 fzonn0p1 13639 . . . . . 6 (𝐸 ∈ ℕ0𝐸 ∈ (0..^(𝐸 + 1)))
5048, 49syl 17 . . . . 5 (𝜑𝐸 ∈ (0..^(𝐸 + 1)))
51 ccatws1len 14525 . . . . . . . 8 ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
5222, 23, 513syl 18 . . . . . . 7 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
53 pfxlen 14588 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5422, 47, 53syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5554oveq1d 7361 . . . . . . 7 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1))
5652, 55eqtrd 2766 . . . . . 6 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = (𝐸 + 1))
5756oveq2d 7362 . . . . 5 (𝜑 → (0..^(♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩))) = (0..^(𝐸 + 1)))
5850, 57eleqtrrd 2834 . . . 4 (𝜑𝐸 ∈ (0..^(♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩))))
59 ccatval1 14481 . . . 4 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷𝐸 ∈ (0..^(♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)))) → ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))‘𝐸) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘𝐸))
6026, 28, 58, 59syl3anc 1373 . . 3 (𝜑 → ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))‘𝐸) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘𝐸))
6148nn0zd 12491 . . . . . 6 (𝜑𝐸 ∈ ℤ)
62 elfzomin 13634 . . . . . 6 (𝐸 ∈ ℤ → 𝐸 ∈ (𝐸..^(𝐸 + 1)))
6361, 62syl 17 . . . . 5 (𝜑𝐸 ∈ (𝐸..^(𝐸 + 1)))
64 s1len 14511 . . . . . . . 8 (♯‘⟨“𝐼”⟩) = 1
6564a1i 11 . . . . . . 7 (𝜑 → (♯‘⟨“𝐼”⟩) = 1)
6654, 65oveq12d 7364 . . . . . 6 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + (♯‘⟨“𝐼”⟩)) = (𝐸 + 1))
6754, 66oveq12d 7364 . . . . 5 (𝜑 → ((♯‘(𝑊 prefix 𝐸))..^((♯‘(𝑊 prefix 𝐸)) + (♯‘⟨“𝐼”⟩))) = (𝐸..^(𝐸 + 1)))
6863, 67eleqtrrd 2834 . . . 4 (𝜑𝐸 ∈ ((♯‘(𝑊 prefix 𝐸))..^((♯‘(𝑊 prefix 𝐸)) + (♯‘⟨“𝐼”⟩))))
69 ccatval2 14482 . . . 4 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷𝐸 ∈ ((♯‘(𝑊 prefix 𝐸))..^((♯‘(𝑊 prefix 𝐸)) + (♯‘⟨“𝐼”⟩)))) → (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘𝐸) = (⟨“𝐼”⟩‘(𝐸 − (♯‘(𝑊 prefix 𝐸)))))
7024, 8, 68, 69syl3anc 1373 . . 3 (𝜑 → (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘𝐸) = (⟨“𝐼”⟩‘(𝐸 − (♯‘(𝑊 prefix 𝐸)))))
7112, 60, 703eqtrd 2770 . 2 (𝜑 → (𝑈𝐸) = (⟨“𝐼”⟩‘(𝐸 − (♯‘(𝑊 prefix 𝐸)))))
7254oveq2d 7362 . . . 4 (𝜑 → (𝐸 − (♯‘(𝑊 prefix 𝐸))) = (𝐸𝐸))
7348nn0cnd 12441 . . . . 5 (𝜑𝐸 ∈ ℂ)
7473subidd 11457 . . . 4 (𝜑 → (𝐸𝐸) = 0)
7572, 74eqtrd 2766 . . 3 (𝜑 → (𝐸 − (♯‘(𝑊 prefix 𝐸))) = 0)
7675fveq2d 6826 . 2 (𝜑 → (⟨“𝐼”⟩‘(𝐸 − (♯‘(𝑊 prefix 𝐸)))) = (⟨“𝐼”⟩‘0))
77 s1fv 14515 . . 3 (𝐼 ∈ (𝐷 ∖ ran 𝑊) → (⟨“𝐼”⟩‘0) = 𝐼)
786, 77syl 17 . 2 (𝜑 → (⟨“𝐼”⟩‘0) = 𝐼)
7971, 76, 783eqtrd 2770 1 (𝜑 → (𝑈𝐸) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cdif 3899  cop 4582  cotp 4584  ccnv 5615  dom cdm 5616  ran crn 5617  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004   + caddc 11006  cmin 11341  0cn0 12378  cz 12465  ...cfz 13404  ..^cfzo 13551  chash 14234  Word cword 14417   ++ cconcat 14474  ⟨“cs1 14500   substr csubstr 14545   prefix cpfx 14575   splice csplice 14653  Basecbs 17117  SymGrpcsymg 19279  toCycctocyc 33070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-substr 14546  df-pfx 14576  df-splice 14654  df-csh 14693  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-tset 17177  df-efmnd 18774  df-symg 19280  df-tocyc 33071
This theorem is referenced by:  cycpmco2lem4  33093  cycpmco2lem5  33094  cycpmco2lem6  33095  cycpmco2  33097
  Copyright terms: Public domain W3C validator