Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2lem2 Structured version   Visualization version   GIF version

Theorem cycpmco2lem2 31394
Description: Lemma for cycpmco2 31400. (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2lem2 (𝜑 → (𝑈𝐸) = 𝐼)

Proof of Theorem cycpmco2lem2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.1 . . . . 5 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
2 cycpmco2.w . . . . . 6 (𝜑𝑊 ∈ dom 𝑀)
3 cycpmco2.e . . . . . . 7 𝐸 = ((𝑊𝐽) + 1)
4 ovexd 7310 . . . . . . 7 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
53, 4eqeltrid 2843 . . . . . 6 (𝜑𝐸 ∈ V)
6 cycpmco2.i . . . . . . . 8 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
76eldifad 3899 . . . . . . 7 (𝜑𝐼𝐷)
87s1cld 14308 . . . . . 6 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
9 splval 14464 . . . . . 6 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
102, 5, 5, 8, 9syl13anc 1371 . . . . 5 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
111, 10eqtrid 2790 . . . 4 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1211fveq1d 6776 . . 3 (𝜑 → (𝑈𝐸) = ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))‘𝐸))
13 ssrab2 4013 . . . . . . 7 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
14 cycpmco2.d . . . . . . . . . 10 (𝜑𝐷𝑉)
15 cycpmco2.c . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
16 cycpmco2.s . . . . . . . . . . 11 𝑆 = (SymGrp‘𝐷)
17 eqid 2738 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
1815, 16, 17tocycf 31384 . . . . . . . . . 10 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
1914, 18syl 17 . . . . . . . . 9 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
2019fdmd 6611 . . . . . . . 8 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
212, 20eleqtrd 2841 . . . . . . 7 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2213, 21sselid 3919 . . . . . 6 (𝜑𝑊 ∈ Word 𝐷)
23 pfxcl 14390 . . . . . 6 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
2422, 23syl 17 . . . . 5 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
25 ccatcl 14277 . . . . 5 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
2624, 8, 25syl2anc 584 . . . 4 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
27 swrdcl 14358 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
2822, 27syl 17 . . . 4 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
29 fz0ssnn0 13351 . . . . . . 7 (0...(♯‘𝑊)) ⊆ ℕ0
30 id 22 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝑤 = 𝑊)
31 dmeq 5812 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
32 eqidd 2739 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑊𝐷 = 𝐷)
3330, 31, 32f1eq123d 6708 . . . . . . . . . . . . . . 15 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
3433elrab 3624 . . . . . . . . . . . . . 14 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
3521, 34sylib 217 . . . . . . . . . . . . 13 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
3635simprd 496 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
37 f1cnv 6740 . . . . . . . . . . . 12 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
38 f1of 6716 . . . . . . . . . . . 12 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3936, 37, 383syl 18 . . . . . . . . . . 11 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
40 cycpmco2.j . . . . . . . . . . 11 (𝜑𝐽 ∈ ran 𝑊)
4139, 40ffvelrnd 6962 . . . . . . . . . 10 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
42 wrddm 14224 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
4322, 42syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
4441, 43eleqtrd 2841 . . . . . . . . 9 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
45 fzofzp1 13484 . . . . . . . . 9 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
4644, 45syl 17 . . . . . . . 8 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
473, 46eqeltrid 2843 . . . . . . 7 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
4829, 47sselid 3919 . . . . . 6 (𝜑𝐸 ∈ ℕ0)
49 fzonn0p1 13464 . . . . . 6 (𝐸 ∈ ℕ0𝐸 ∈ (0..^(𝐸 + 1)))
5048, 49syl 17 . . . . 5 (𝜑𝐸 ∈ (0..^(𝐸 + 1)))
51 ccatws1len 14325 . . . . . . . 8 ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
5222, 23, 513syl 18 . . . . . . 7 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = ((♯‘(𝑊 prefix 𝐸)) + 1))
53 pfxlen 14396 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5422, 47, 53syl2anc 584 . . . . . . . 8 (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸)
5554oveq1d 7290 . . . . . . 7 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1))
5652, 55eqtrd 2778 . . . . . 6 (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)) = (𝐸 + 1))
5756oveq2d 7291 . . . . 5 (𝜑 → (0..^(♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩))) = (0..^(𝐸 + 1)))
5850, 57eleqtrrd 2842 . . . 4 (𝜑𝐸 ∈ (0..^(♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩))))
59 ccatval1 14281 . . . 4 ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷 ∧ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷𝐸 ∈ (0..^(♯‘((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)))) → ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))‘𝐸) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘𝐸))
6026, 28, 58, 59syl3anc 1370 . . 3 (𝜑 → ((((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))‘𝐸) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘𝐸))
6148nn0zd 12424 . . . . . 6 (𝜑𝐸 ∈ ℤ)
62 elfzomin 13459 . . . . . 6 (𝐸 ∈ ℤ → 𝐸 ∈ (𝐸..^(𝐸 + 1)))
6361, 62syl 17 . . . . 5 (𝜑𝐸 ∈ (𝐸..^(𝐸 + 1)))
64 s1len 14311 . . . . . . . 8 (♯‘⟨“𝐼”⟩) = 1
6564a1i 11 . . . . . . 7 (𝜑 → (♯‘⟨“𝐼”⟩) = 1)
6654, 65oveq12d 7293 . . . . . 6 (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + (♯‘⟨“𝐼”⟩)) = (𝐸 + 1))
6754, 66oveq12d 7293 . . . . 5 (𝜑 → ((♯‘(𝑊 prefix 𝐸))..^((♯‘(𝑊 prefix 𝐸)) + (♯‘⟨“𝐼”⟩))) = (𝐸..^(𝐸 + 1)))
6863, 67eleqtrrd 2842 . . . 4 (𝜑𝐸 ∈ ((♯‘(𝑊 prefix 𝐸))..^((♯‘(𝑊 prefix 𝐸)) + (♯‘⟨“𝐼”⟩))))
69 ccatval2 14283 . . . 4 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷𝐸 ∈ ((♯‘(𝑊 prefix 𝐸))..^((♯‘(𝑊 prefix 𝐸)) + (♯‘⟨“𝐼”⟩)))) → (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘𝐸) = (⟨“𝐼”⟩‘(𝐸 − (♯‘(𝑊 prefix 𝐸)))))
7024, 8, 68, 69syl3anc 1370 . . 3 (𝜑 → (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)‘𝐸) = (⟨“𝐼”⟩‘(𝐸 − (♯‘(𝑊 prefix 𝐸)))))
7112, 60, 703eqtrd 2782 . 2 (𝜑 → (𝑈𝐸) = (⟨“𝐼”⟩‘(𝐸 − (♯‘(𝑊 prefix 𝐸)))))
7254oveq2d 7291 . . . 4 (𝜑 → (𝐸 − (♯‘(𝑊 prefix 𝐸))) = (𝐸𝐸))
7348nn0cnd 12295 . . . . 5 (𝜑𝐸 ∈ ℂ)
7473subidd 11320 . . . 4 (𝜑 → (𝐸𝐸) = 0)
7572, 74eqtrd 2778 . . 3 (𝜑 → (𝐸 − (♯‘(𝑊 prefix 𝐸))) = 0)
7675fveq2d 6778 . 2 (𝜑 → (⟨“𝐼”⟩‘(𝐸 − (♯‘(𝑊 prefix 𝐸)))) = (⟨“𝐼”⟩‘0))
77 s1fv 14315 . . 3 (𝐼 ∈ (𝐷 ∖ ran 𝑊) → (⟨“𝐼”⟩‘0) = 𝐼)
786, 77syl 17 . 2 (𝜑 → (⟨“𝐼”⟩‘0) = 𝐼)
7971, 76, 783eqtrd 2782 1 (𝜑 → (𝑈𝐸) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cdif 3884  cop 4567  cotp 4569  ccnv 5588  dom cdm 5589  ran crn 5590  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  0cn0 12233  cz 12319  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300   substr csubstr 14353   prefix cpfx 14383   splice csplice 14462  Basecbs 16912  SymGrpcsymg 18974  toCycctocyc 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-csh 14502  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-symg 18975  df-tocyc 31374
This theorem is referenced by:  cycpmco2lem4  31396  cycpmco2lem5  31397  cycpmco2lem6  31398  cycpmco2  31400
  Copyright terms: Public domain W3C validator