Step | Hyp | Ref
| Expression |
1 | | cycpmco2.1 |
. . . . 5
⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) |
2 | | cycpmco2.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ dom 𝑀) |
3 | | cycpmco2.e |
. . . . . . 7
⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) |
4 | | ovexd 7290 |
. . . . . . 7
⊢ (𝜑 → ((◡𝑊‘𝐽) + 1) ∈ V) |
5 | 3, 4 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ V) |
6 | | cycpmco2.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) |
7 | 6 | eldifad 3895 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
8 | 7 | s1cld 14236 |
. . . . . 6
⊢ (𝜑 → 〈“𝐼”〉 ∈ Word 𝐷) |
9 | | splval 14392 |
. . . . . 6
⊢ ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ 〈“𝐼”〉 ∈ Word 𝐷)) → (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) |
10 | 2, 5, 5, 8, 9 | syl13anc 1370 |
. . . . 5
⊢ (𝜑 → (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) |
11 | 1, 10 | syl5eq 2791 |
. . . 4
⊢ (𝜑 → 𝑈 = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))) |
12 | 11 | fveq1d 6758 |
. . 3
⊢ (𝜑 → (𝑈‘𝐸) = ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))‘𝐸)) |
13 | | ssrab2 4009 |
. . . . . . 7
⊢ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ⊆ Word 𝐷 |
14 | | cycpmco2.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
15 | | cycpmco2.c |
. . . . . . . . . . 11
⊢ 𝑀 = (toCyc‘𝐷) |
16 | | cycpmco2.s |
. . . . . . . . . . 11
⊢ 𝑆 = (SymGrp‘𝐷) |
17 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘𝑆) =
(Base‘𝑆) |
18 | 15, 16, 17 | tocycf 31286 |
. . . . . . . . . 10
⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
19 | 14, 18 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶(Base‘𝑆)) |
20 | 19 | fdmd 6595 |
. . . . . . . 8
⊢ (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
21 | 2, 20 | eleqtrd 2841 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
22 | 13, 21 | sselid 3915 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
23 | | pfxcl 14318 |
. . . . . 6
⊢ (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷) |
25 | | ccatcl 14205 |
. . . . 5
⊢ (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ 〈“𝐼”〉 ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ∈ Word 𝐷) |
26 | 24, 8, 25 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ∈ Word 𝐷) |
27 | | swrdcl 14286 |
. . . . 5
⊢ (𝑊 ∈ Word 𝐷 → (𝑊 substr 〈𝐸, (♯‘𝑊)〉) ∈ Word 𝐷) |
28 | 22, 27 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑊 substr 〈𝐸, (♯‘𝑊)〉) ∈ Word 𝐷) |
29 | | fz0ssnn0 13280 |
. . . . . . 7
⊢
(0...(♯‘𝑊)) ⊆
ℕ0 |
30 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) |
31 | | dmeq 5801 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊) |
32 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑊 → 𝐷 = 𝐷) |
33 | 30, 31, 32 | f1eq123d 6692 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑊 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
34 | 33 | elrab 3617 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷)) |
35 | 21, 34 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷)) |
36 | 35 | simprd 495 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
37 | | f1cnv 6723 |
. . . . . . . . . . . 12
⊢ (𝑊:dom 𝑊–1-1→𝐷 → ◡𝑊:ran 𝑊–1-1-onto→dom
𝑊) |
38 | | f1of 6700 |
. . . . . . . . . . . 12
⊢ (◡𝑊:ran 𝑊–1-1-onto→dom
𝑊 → ◡𝑊:ran 𝑊⟶dom 𝑊) |
39 | 36, 37, 38 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ◡𝑊:ran 𝑊⟶dom 𝑊) |
40 | | cycpmco2.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ ran 𝑊) |
41 | 39, 40 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝑊‘𝐽) ∈ dom 𝑊) |
42 | | wrddm 14152 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊))) |
43 | 22, 42 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
44 | 41, 43 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝑊‘𝐽) ∈ (0..^(♯‘𝑊))) |
45 | | fzofzp1 13412 |
. . . . . . . . 9
⊢ ((◡𝑊‘𝐽) ∈ (0..^(♯‘𝑊)) → ((◡𝑊‘𝐽) + 1) ∈ (0...(♯‘𝑊))) |
46 | 44, 45 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((◡𝑊‘𝐽) + 1) ∈ (0...(♯‘𝑊))) |
47 | 3, 46 | eqeltrid 2843 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ (0...(♯‘𝑊))) |
48 | 29, 47 | sselid 3915 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈
ℕ0) |
49 | | fzonn0p1 13392 |
. . . . . 6
⊢ (𝐸 ∈ ℕ0
→ 𝐸 ∈ (0..^(𝐸 + 1))) |
50 | 48, 49 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (0..^(𝐸 + 1))) |
51 | | ccatws1len 14253 |
. . . . . . . 8
⊢ ((𝑊 prefix 𝐸) ∈ Word 𝐷 → (♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) = ((♯‘(𝑊 prefix 𝐸)) + 1)) |
52 | 22, 23, 51 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) = ((♯‘(𝑊 prefix 𝐸)) + 1)) |
53 | | pfxlen 14324 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐸)) = 𝐸) |
54 | 22, 47, 53 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (♯‘(𝑊 prefix 𝐸)) = 𝐸) |
55 | 54 | oveq1d 7270 |
. . . . . . 7
⊢ (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + 1) = (𝐸 + 1)) |
56 | 52, 55 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)) = (𝐸 + 1)) |
57 | 56 | oveq2d 7271 |
. . . . 5
⊢ (𝜑 →
(0..^(♯‘((𝑊
prefix 𝐸) ++
〈“𝐼”〉))) = (0..^(𝐸 + 1))) |
58 | 50, 57 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ (0..^(♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)))) |
59 | | ccatval1 14209 |
. . . 4
⊢ ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ∈ Word 𝐷 ∧ (𝑊 substr 〈𝐸, (♯‘𝑊)〉) ∈ Word 𝐷 ∧ 𝐸 ∈ (0..^(♯‘((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)))) → ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))‘𝐸) = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)‘𝐸)) |
60 | 26, 28, 58, 59 | syl3anc 1369 |
. . 3
⊢ (𝜑 → ((((𝑊 prefix 𝐸) ++ 〈“𝐼”〉) ++ (𝑊 substr 〈𝐸, (♯‘𝑊)〉))‘𝐸) = (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)‘𝐸)) |
61 | 48 | nn0zd 12353 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ ℤ) |
62 | | elfzomin 13387 |
. . . . . 6
⊢ (𝐸 ∈ ℤ → 𝐸 ∈ (𝐸..^(𝐸 + 1))) |
63 | 61, 62 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (𝐸..^(𝐸 + 1))) |
64 | | s1len 14239 |
. . . . . . . 8
⊢
(♯‘〈“𝐼”〉) = 1 |
65 | 64 | a1i 11 |
. . . . . . 7
⊢ (𝜑 →
(♯‘〈“𝐼”〉) = 1) |
66 | 54, 65 | oveq12d 7273 |
. . . . . 6
⊢ (𝜑 → ((♯‘(𝑊 prefix 𝐸)) + (♯‘〈“𝐼”〉)) = (𝐸 + 1)) |
67 | 54, 66 | oveq12d 7273 |
. . . . 5
⊢ (𝜑 → ((♯‘(𝑊 prefix 𝐸))..^((♯‘(𝑊 prefix 𝐸)) + (♯‘〈“𝐼”〉))) = (𝐸..^(𝐸 + 1))) |
68 | 63, 67 | eleqtrrd 2842 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ ((♯‘(𝑊 prefix 𝐸))..^((♯‘(𝑊 prefix 𝐸)) + (♯‘〈“𝐼”〉)))) |
69 | | ccatval2 14211 |
. . . 4
⊢ (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ 〈“𝐼”〉 ∈ Word 𝐷 ∧ 𝐸 ∈ ((♯‘(𝑊 prefix 𝐸))..^((♯‘(𝑊 prefix 𝐸)) + (♯‘〈“𝐼”〉)))) →
(((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)‘𝐸) = (〈“𝐼”〉‘(𝐸 − (♯‘(𝑊 prefix 𝐸))))) |
70 | 24, 8, 68, 69 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (((𝑊 prefix 𝐸) ++ 〈“𝐼”〉)‘𝐸) = (〈“𝐼”〉‘(𝐸 − (♯‘(𝑊 prefix 𝐸))))) |
71 | 12, 60, 70 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → (𝑈‘𝐸) = (〈“𝐼”〉‘(𝐸 − (♯‘(𝑊 prefix 𝐸))))) |
72 | 54 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → (𝐸 − (♯‘(𝑊 prefix 𝐸))) = (𝐸 − 𝐸)) |
73 | 48 | nn0cnd 12225 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ ℂ) |
74 | 73 | subidd 11250 |
. . . 4
⊢ (𝜑 → (𝐸 − 𝐸) = 0) |
75 | 72, 74 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (𝐸 − (♯‘(𝑊 prefix 𝐸))) = 0) |
76 | 75 | fveq2d 6760 |
. 2
⊢ (𝜑 → (〈“𝐼”〉‘(𝐸 − (♯‘(𝑊 prefix 𝐸)))) = (〈“𝐼”〉‘0)) |
77 | | s1fv 14243 |
. . 3
⊢ (𝐼 ∈ (𝐷 ∖ ran 𝑊) → (〈“𝐼”〉‘0) = 𝐼) |
78 | 6, 77 | syl 17 |
. 2
⊢ (𝜑 → (〈“𝐼”〉‘0) = 𝐼) |
79 | 71, 76, 78 | 3eqtrd 2782 |
1
⊢ (𝜑 → (𝑈‘𝐸) = 𝐼) |