Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2f1 Structured version   Visualization version   GIF version

Theorem cycpmco2f1 33088
Description: The word U used in cycpmco2 33097 is injective, so it can represent a cycle and form a cyclic permutation (𝑀𝑈). (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2f1 (𝜑𝑈:dom 𝑈1-1𝐷)

Proof of Theorem cycpmco2f1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.d . . 3 (𝜑𝐷𝑉)
2 ssrab2 4046 . . . . . 6 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
3 cycpmco2.w . . . . . . 7 (𝜑𝑊 ∈ dom 𝑀)
4 cycpmco2.c . . . . . . . . . 10 𝑀 = (toCyc‘𝐷)
5 cycpmco2.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝐷)
6 eqid 2730 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
74, 5, 6tocycf 33081 . . . . . . . . 9 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
81, 7syl 17 . . . . . . . 8 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
98fdmd 6701 . . . . . . 7 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
103, 9eleqtrd 2831 . . . . . 6 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
112, 10sselid 3947 . . . . 5 (𝜑𝑊 ∈ Word 𝐷)
12 pfxcl 14649 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
1311, 12syl 17 . . . 4 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
14 cycpmco2.i . . . . . 6 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
1514eldifad 3929 . . . . 5 (𝜑𝐼𝐷)
1615s1cld 14575 . . . 4 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
17 ccatcl 14546 . . . 4 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
1813, 16, 17syl2anc 584 . . 3 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
19 swrdcl 14617 . . . 4 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
2011, 19syl 17 . . 3 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
21 id 22 . . . . . . . . 9 (𝑤 = 𝑊𝑤 = 𝑊)
22 dmeq 5870 . . . . . . . . 9 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
23 eqidd 2731 . . . . . . . . 9 (𝑤 = 𝑊𝐷 = 𝐷)
2421, 22, 23f1eq123d 6795 . . . . . . . 8 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
2524elrab 3662 . . . . . . 7 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2610, 25sylib 218 . . . . . 6 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2726simprd 495 . . . . 5 (𝜑𝑊:dom 𝑊1-1𝐷)
28 cycpmco2.e . . . . . 6 𝐸 = ((𝑊𝐽) + 1)
29 f1cnv 6827 . . . . . . . . . 10 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1of 6803 . . . . . . . . . 10 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3127, 29, 303syl 18 . . . . . . . . 9 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
32 cycpmco2.j . . . . . . . . 9 (𝜑𝐽 ∈ ran 𝑊)
3331, 32ffvelcdmd 7060 . . . . . . . 8 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
34 wrddm 14493 . . . . . . . . 9 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
3511, 34syl 17 . . . . . . . 8 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3633, 35eleqtrd 2831 . . . . . . 7 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
37 fzofzp1 13732 . . . . . . 7 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3836, 37syl 17 . . . . . 6 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3928, 38eqeltrid 2833 . . . . 5 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
4011, 27, 39pfxf1 32870 . . . 4 (𝜑 → (𝑊 prefix 𝐸):dom (𝑊 prefix 𝐸)–1-1𝐷)
4115s1f1 32871 . . . 4 (𝜑 → ⟨“𝐼”⟩:dom ⟨“𝐼”⟩–1-1𝐷)
42 s1rn 14571 . . . . . . 7 (𝐼𝐷 → ran ⟨“𝐼”⟩ = {𝐼})
4315, 42syl 17 . . . . . 6 (𝜑 → ran ⟨“𝐼”⟩ = {𝐼})
4443ineq2d 4186 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∩ {𝐼}))
45 pfxrn2 32868 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐸) ⊆ ran 𝑊)
4611, 39, 45syl2anc 584 . . . . . . . 8 (𝜑 → ran (𝑊 prefix 𝐸) ⊆ ran 𝑊)
4746ssrind 4210 . . . . . . 7 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ (ran 𝑊 ∩ {𝐼}))
4814eldifbd 3930 . . . . . . . 8 (𝜑 → ¬ 𝐼 ∈ ran 𝑊)
49 disjsn 4678 . . . . . . . 8 ((ran 𝑊 ∩ {𝐼}) = ∅ ↔ ¬ 𝐼 ∈ ran 𝑊)
5048, 49sylibr 234 . . . . . . 7 (𝜑 → (ran 𝑊 ∩ {𝐼}) = ∅)
5147, 50sseqtrd 3986 . . . . . 6 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ ∅)
52 ss0 4368 . . . . . 6 ((ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ ∅ → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) = ∅)
5351, 52syl 17 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) = ∅)
5444, 53eqtrd 2765 . . . 4 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran ⟨“𝐼”⟩) = ∅)
551, 13, 16, 40, 41, 54ccatf1 32877 . . 3 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩):dom ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)–1-1𝐷)
56 lencl 14505 . . . . 5 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
57 nn0fz0 13593 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
5857biimpi 216 . . . . 5 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
5911, 56, 583syl 18 . . . 4 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6011, 39, 59, 27swrdf1 32885 . . 3 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩):dom (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)–1-1𝐷)
61 ccatrn 14561 . . . . . . 7 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
6213, 16, 61syl2anc 584 . . . . . 6 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
6362ineq1d 4185 . . . . 5 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
64 indir 4252 . . . . 5 ((ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
6563, 64eqtrdi 2781 . . . 4 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
66 fz0ssnn0 13590 . . . . . . . . . 10 (0...(♯‘𝑊)) ⊆ ℕ0
6766, 39sselid 3947 . . . . . . . . 9 (𝜑𝐸 ∈ ℕ0)
68 pfxval 14645 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ ℕ0) → (𝑊 prefix 𝐸) = (𝑊 substr ⟨0, 𝐸⟩))
6911, 67, 68syl2anc 584 . . . . . . . 8 (𝜑 → (𝑊 prefix 𝐸) = (𝑊 substr ⟨0, 𝐸⟩))
7069rneqd 5905 . . . . . . 7 (𝜑 → ran (𝑊 prefix 𝐸) = ran (𝑊 substr ⟨0, 𝐸⟩))
7170ineq1d 4185 . . . . . 6 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran (𝑊 substr ⟨0, 𝐸⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
72 0elfz 13592 . . . . . . . 8 (𝐸 ∈ ℕ0 → 0 ∈ (0...𝐸))
7367, 72syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0...𝐸))
74 elfzuz3 13489 . . . . . . . 8 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
75 eluzfz1 13499 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝐸) → 𝐸 ∈ (𝐸...(♯‘𝑊)))
7639, 74, 753syl 18 . . . . . . 7 (𝜑𝐸 ∈ (𝐸...(♯‘𝑊)))
77 eluzfz2 13500 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝐸) → (♯‘𝑊) ∈ (𝐸...(♯‘𝑊)))
7839, 74, 773syl 18 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ (𝐸...(♯‘𝑊)))
7911, 73, 39, 27, 76, 78swrdrndisj 32886 . . . . . 6 (𝜑 → (ran (𝑊 substr ⟨0, 𝐸⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
8071, 79eqtrd 2765 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
81 incom 4175 . . . . . 6 (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩)
8243ineq2d 4186 . . . . . . 7 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩) = (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}))
83 swrdrn2 32883 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ⊆ ran 𝑊)
8411, 39, 59, 83syl3anc 1373 . . . . . . . . . 10 (𝜑 → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ⊆ ran 𝑊)
8584ssrind 4210 . . . . . . . . 9 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ (ran 𝑊 ∩ {𝐼}))
8685, 50sseqtrd 3986 . . . . . . . 8 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ ∅)
87 ss0 4368 . . . . . . . 8 ((ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ ∅ → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) = ∅)
8886, 87syl 17 . . . . . . 7 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) = ∅)
8982, 88eqtrd 2765 . . . . . 6 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩) = ∅)
9081, 89eqtrid 2777 . . . . 5 (𝜑 → (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
9180, 90uneq12d 4135 . . . 4 (𝜑 → ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = (∅ ∪ ∅))
92 unidm 4123 . . . . 5 (∅ ∪ ∅) = ∅
9392a1i 11 . . . 4 (𝜑 → (∅ ∪ ∅) = ∅)
9465, 91, 933eqtrd 2769 . . 3 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
951, 18, 20, 55, 60, 94ccatf1 32877 . 2 (𝜑 → (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)):dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))–1-1𝐷)
96 cycpmco2.1 . . . 4 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
97 ovexd 7425 . . . . . 6 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
9828, 97eqeltrid 2833 . . . . 5 (𝜑𝐸 ∈ V)
99 splval 14723 . . . . 5 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1003, 98, 98, 16, 99syl13anc 1374 . . . 4 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
10196, 100eqtrid 2777 . . 3 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
102101dmeqd 5872 . . 3 (𝜑 → dom 𝑈 = dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
103 eqidd 2731 . . 3 (𝜑𝐷 = 𝐷)
104101, 102, 103f1eq123d 6795 . 2 (𝜑 → (𝑈:dom 𝑈1-1𝐷 ↔ (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)):dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))–1-1𝐷))
10595, 104mpbird 257 1 (𝜑𝑈:dom 𝑈1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592  cop 4598  cotp 4600  ccnv 5640  dom cdm 5641  ran crn 5642  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  0cn0 12449  cuz 12800  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   ++ cconcat 14542  ⟨“cs1 14567   substr csubstr 14612   prefix cpfx 14642   splice csplice 14721  Basecbs 17186  SymGrpcsymg 19306  toCycctocyc 33070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-csh 14761  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-efmnd 18803  df-symg 19307  df-tocyc 33071
This theorem is referenced by:  cycpmco2lem4  33093  cycpmco2lem5  33094  cycpmco2lem6  33095  cycpmco2lem7  33096  cycpmco2  33097
  Copyright terms: Public domain W3C validator