Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2f1 Structured version   Visualization version   GIF version

Theorem cycpmco2f1 33100
Description: The word U used in cycpmco2 33109 is injective, so it can represent a cycle and form a cyclic permutation (𝑀𝑈). (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2f1 (𝜑𝑈:dom 𝑈1-1𝐷)

Proof of Theorem cycpmco2f1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.d . . 3 (𝜑𝐷𝑉)
2 ssrab2 4029 . . . . . 6 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
3 cycpmco2.w . . . . . . 7 (𝜑𝑊 ∈ dom 𝑀)
4 cycpmco2.c . . . . . . . . . 10 𝑀 = (toCyc‘𝐷)
5 cycpmco2.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝐷)
6 eqid 2733 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
74, 5, 6tocycf 33093 . . . . . . . . 9 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
81, 7syl 17 . . . . . . . 8 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
98fdmd 6666 . . . . . . 7 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
103, 9eleqtrd 2835 . . . . . 6 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
112, 10sselid 3928 . . . . 5 (𝜑𝑊 ∈ Word 𝐷)
12 pfxcl 14587 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
1311, 12syl 17 . . . 4 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
14 cycpmco2.i . . . . . 6 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
1514eldifad 3910 . . . . 5 (𝜑𝐼𝐷)
1615s1cld 14513 . . . 4 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
17 ccatcl 14483 . . . 4 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
1813, 16, 17syl2anc 584 . . 3 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
19 swrdcl 14555 . . . 4 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
2011, 19syl 17 . . 3 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
21 id 22 . . . . . . . . 9 (𝑤 = 𝑊𝑤 = 𝑊)
22 dmeq 5847 . . . . . . . . 9 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
23 eqidd 2734 . . . . . . . . 9 (𝑤 = 𝑊𝐷 = 𝐷)
2421, 22, 23f1eq123d 6760 . . . . . . . 8 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
2524elrab 3643 . . . . . . 7 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2610, 25sylib 218 . . . . . 6 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2726simprd 495 . . . . 5 (𝜑𝑊:dom 𝑊1-1𝐷)
28 cycpmco2.e . . . . . 6 𝐸 = ((𝑊𝐽) + 1)
29 f1cnv 6792 . . . . . . . . . 10 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1of 6768 . . . . . . . . . 10 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3127, 29, 303syl 18 . . . . . . . . 9 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
32 cycpmco2.j . . . . . . . . 9 (𝜑𝐽 ∈ ran 𝑊)
3331, 32ffvelcdmd 7024 . . . . . . . 8 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
34 wrddm 14430 . . . . . . . . 9 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
3511, 34syl 17 . . . . . . . 8 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3633, 35eleqtrd 2835 . . . . . . 7 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
37 fzofzp1 13666 . . . . . . 7 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3836, 37syl 17 . . . . . 6 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3928, 38eqeltrid 2837 . . . . 5 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
4011, 27, 39pfxf1 32930 . . . 4 (𝜑 → (𝑊 prefix 𝐸):dom (𝑊 prefix 𝐸)–1-1𝐷)
4115s1f1 32931 . . . 4 (𝜑 → ⟨“𝐼”⟩:dom ⟨“𝐼”⟩–1-1𝐷)
42 s1rn 14509 . . . . . . 7 (𝐼𝐷 → ran ⟨“𝐼”⟩ = {𝐼})
4315, 42syl 17 . . . . . 6 (𝜑 → ran ⟨“𝐼”⟩ = {𝐼})
4443ineq2d 4169 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∩ {𝐼}))
45 pfxrn2 32928 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐸) ⊆ ran 𝑊)
4611, 39, 45syl2anc 584 . . . . . . . 8 (𝜑 → ran (𝑊 prefix 𝐸) ⊆ ran 𝑊)
4746ssrind 4193 . . . . . . 7 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ (ran 𝑊 ∩ {𝐼}))
4814eldifbd 3911 . . . . . . . 8 (𝜑 → ¬ 𝐼 ∈ ran 𝑊)
49 disjsn 4663 . . . . . . . 8 ((ran 𝑊 ∩ {𝐼}) = ∅ ↔ ¬ 𝐼 ∈ ran 𝑊)
5048, 49sylibr 234 . . . . . . 7 (𝜑 → (ran 𝑊 ∩ {𝐼}) = ∅)
5147, 50sseqtrd 3967 . . . . . 6 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ ∅)
52 ss0 4351 . . . . . 6 ((ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ ∅ → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) = ∅)
5351, 52syl 17 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) = ∅)
5444, 53eqtrd 2768 . . . 4 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran ⟨“𝐼”⟩) = ∅)
551, 13, 16, 40, 41, 54ccatf1 32937 . . 3 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩):dom ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)–1-1𝐷)
56 lencl 14442 . . . . 5 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
57 nn0fz0 13527 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
5857biimpi 216 . . . . 5 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
5911, 56, 583syl 18 . . . 4 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6011, 39, 59, 27swrdf1 32944 . . 3 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩):dom (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)–1-1𝐷)
61 ccatrn 14499 . . . . . . 7 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
6213, 16, 61syl2anc 584 . . . . . 6 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
6362ineq1d 4168 . . . . 5 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
64 indir 4235 . . . . 5 ((ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
6563, 64eqtrdi 2784 . . . 4 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
66 fz0ssnn0 13524 . . . . . . . . . 10 (0...(♯‘𝑊)) ⊆ ℕ0
6766, 39sselid 3928 . . . . . . . . 9 (𝜑𝐸 ∈ ℕ0)
68 pfxval 14583 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ ℕ0) → (𝑊 prefix 𝐸) = (𝑊 substr ⟨0, 𝐸⟩))
6911, 67, 68syl2anc 584 . . . . . . . 8 (𝜑 → (𝑊 prefix 𝐸) = (𝑊 substr ⟨0, 𝐸⟩))
7069rneqd 5882 . . . . . . 7 (𝜑 → ran (𝑊 prefix 𝐸) = ran (𝑊 substr ⟨0, 𝐸⟩))
7170ineq1d 4168 . . . . . 6 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran (𝑊 substr ⟨0, 𝐸⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
72 0elfz 13526 . . . . . . . 8 (𝐸 ∈ ℕ0 → 0 ∈ (0...𝐸))
7367, 72syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0...𝐸))
74 elfzuz3 13423 . . . . . . . 8 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
75 eluzfz1 13433 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝐸) → 𝐸 ∈ (𝐸...(♯‘𝑊)))
7639, 74, 753syl 18 . . . . . . 7 (𝜑𝐸 ∈ (𝐸...(♯‘𝑊)))
77 eluzfz2 13434 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝐸) → (♯‘𝑊) ∈ (𝐸...(♯‘𝑊)))
7839, 74, 773syl 18 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ (𝐸...(♯‘𝑊)))
7911, 73, 39, 27, 76, 78swrdrndisj 32945 . . . . . 6 (𝜑 → (ran (𝑊 substr ⟨0, 𝐸⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
8071, 79eqtrd 2768 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
81 incom 4158 . . . . . 6 (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩)
8243ineq2d 4169 . . . . . . 7 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩) = (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}))
83 swrdrn2 32942 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ⊆ ran 𝑊)
8411, 39, 59, 83syl3anc 1373 . . . . . . . . . 10 (𝜑 → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ⊆ ran 𝑊)
8584ssrind 4193 . . . . . . . . 9 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ (ran 𝑊 ∩ {𝐼}))
8685, 50sseqtrd 3967 . . . . . . . 8 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ ∅)
87 ss0 4351 . . . . . . . 8 ((ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ ∅ → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) = ∅)
8886, 87syl 17 . . . . . . 7 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) = ∅)
8982, 88eqtrd 2768 . . . . . 6 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩) = ∅)
9081, 89eqtrid 2780 . . . . 5 (𝜑 → (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
9180, 90uneq12d 4118 . . . 4 (𝜑 → ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = (∅ ∪ ∅))
92 unidm 4106 . . . . 5 (∅ ∪ ∅) = ∅
9392a1i 11 . . . 4 (𝜑 → (∅ ∪ ∅) = ∅)
9465, 91, 933eqtrd 2772 . . 3 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
951, 18, 20, 55, 60, 94ccatf1 32937 . 2 (𝜑 → (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)):dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))–1-1𝐷)
96 cycpmco2.1 . . . 4 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
97 ovexd 7387 . . . . . 6 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
9828, 97eqeltrid 2837 . . . . 5 (𝜑𝐸 ∈ V)
99 splval 14660 . . . . 5 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1003, 98, 98, 16, 99syl13anc 1374 . . . 4 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
10196, 100eqtrid 2780 . . 3 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
102101dmeqd 5849 . . 3 (𝜑 → dom 𝑈 = dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
103 eqidd 2734 . . 3 (𝜑𝐷 = 𝐷)
104101, 102, 103f1eq123d 6760 . 2 (𝜑 → (𝑈:dom 𝑈1-1𝐷 ↔ (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)):dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))–1-1𝐷))
10595, 104mpbird 257 1 (𝜑𝑈:dom 𝑈1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4575  cop 4581  cotp 4583  ccnv 5618  dom cdm 5619  ran crn 5620  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016  0cn0 12388  cuz 12738  ...cfz 13409  ..^cfzo 13556  chash 14239  Word cword 14422   ++ cconcat 14479  ⟨“cs1 14505   substr csubstr 14550   prefix cpfx 14580   splice csplice 14658  Basecbs 17122  SymGrpcsymg 19283  toCycctocyc 33082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-substr 14551  df-pfx 14581  df-splice 14659  df-csh 14698  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-tset 17182  df-efmnd 18779  df-symg 19284  df-tocyc 33083
This theorem is referenced by:  cycpmco2lem4  33105  cycpmco2lem5  33106  cycpmco2lem6  33107  cycpmco2lem7  33108  cycpmco2  33109
  Copyright terms: Public domain W3C validator