Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2f1 Structured version   Visualization version   GIF version

Theorem cycpmco2f1 31293
Description: The word U used in cycpmco2 31302 is injective, so it can represent a cycle and form a cyclic permutation (𝑀𝑈). (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2f1 (𝜑𝑈:dom 𝑈1-1𝐷)

Proof of Theorem cycpmco2f1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.d . . 3 (𝜑𝐷𝑉)
2 ssrab2 4009 . . . . . 6 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
3 cycpmco2.w . . . . . . 7 (𝜑𝑊 ∈ dom 𝑀)
4 cycpmco2.c . . . . . . . . . 10 𝑀 = (toCyc‘𝐷)
5 cycpmco2.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝐷)
6 eqid 2738 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
74, 5, 6tocycf 31286 . . . . . . . . 9 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
81, 7syl 17 . . . . . . . 8 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
98fdmd 6595 . . . . . . 7 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
103, 9eleqtrd 2841 . . . . . 6 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
112, 10sselid 3915 . . . . 5 (𝜑𝑊 ∈ Word 𝐷)
12 pfxcl 14318 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
1311, 12syl 17 . . . 4 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
14 cycpmco2.i . . . . . 6 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
1514eldifad 3895 . . . . 5 (𝜑𝐼𝐷)
1615s1cld 14236 . . . 4 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
17 ccatcl 14205 . . . 4 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
1813, 16, 17syl2anc 583 . . 3 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
19 swrdcl 14286 . . . 4 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
2011, 19syl 17 . . 3 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
21 id 22 . . . . . . . . 9 (𝑤 = 𝑊𝑤 = 𝑊)
22 dmeq 5801 . . . . . . . . 9 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
23 eqidd 2739 . . . . . . . . 9 (𝑤 = 𝑊𝐷 = 𝐷)
2421, 22, 23f1eq123d 6692 . . . . . . . 8 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
2524elrab 3617 . . . . . . 7 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2610, 25sylib 217 . . . . . 6 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2726simprd 495 . . . . 5 (𝜑𝑊:dom 𝑊1-1𝐷)
28 cycpmco2.e . . . . . 6 𝐸 = ((𝑊𝐽) + 1)
29 f1cnv 6723 . . . . . . . . . 10 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1of 6700 . . . . . . . . . 10 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3127, 29, 303syl 18 . . . . . . . . 9 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
32 cycpmco2.j . . . . . . . . 9 (𝜑𝐽 ∈ ran 𝑊)
3331, 32ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
34 wrddm 14152 . . . . . . . . 9 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
3511, 34syl 17 . . . . . . . 8 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3633, 35eleqtrd 2841 . . . . . . 7 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
37 fzofzp1 13412 . . . . . . 7 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3836, 37syl 17 . . . . . 6 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3928, 38eqeltrid 2843 . . . . 5 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
4011, 27, 39pfxf1 31118 . . . 4 (𝜑 → (𝑊 prefix 𝐸):dom (𝑊 prefix 𝐸)–1-1𝐷)
4115s1f1 31119 . . . 4 (𝜑 → ⟨“𝐼”⟩:dom ⟨“𝐼”⟩–1-1𝐷)
42 s1rn 14232 . . . . . . 7 (𝐼𝐷 → ran ⟨“𝐼”⟩ = {𝐼})
4315, 42syl 17 . . . . . 6 (𝜑 → ran ⟨“𝐼”⟩ = {𝐼})
4443ineq2d 4143 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∩ {𝐼}))
45 pfxrn2 31116 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐸) ⊆ ran 𝑊)
4611, 39, 45syl2anc 583 . . . . . . . 8 (𝜑 → ran (𝑊 prefix 𝐸) ⊆ ran 𝑊)
4746ssrind 4166 . . . . . . 7 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ (ran 𝑊 ∩ {𝐼}))
4814eldifbd 3896 . . . . . . . 8 (𝜑 → ¬ 𝐼 ∈ ran 𝑊)
49 disjsn 4644 . . . . . . . 8 ((ran 𝑊 ∩ {𝐼}) = ∅ ↔ ¬ 𝐼 ∈ ran 𝑊)
5048, 49sylibr 233 . . . . . . 7 (𝜑 → (ran 𝑊 ∩ {𝐼}) = ∅)
5147, 50sseqtrd 3957 . . . . . 6 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ ∅)
52 ss0 4329 . . . . . 6 ((ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ ∅ → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) = ∅)
5351, 52syl 17 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) = ∅)
5444, 53eqtrd 2778 . . . 4 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran ⟨“𝐼”⟩) = ∅)
551, 13, 16, 40, 41, 54ccatf1 31125 . . 3 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩):dom ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)–1-1𝐷)
56 lencl 14164 . . . . 5 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
57 nn0fz0 13283 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
5857biimpi 215 . . . . 5 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
5911, 56, 583syl 18 . . . 4 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6011, 39, 59, 27swrdf1 31130 . . 3 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩):dom (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)–1-1𝐷)
61 ccatrn 14222 . . . . . . 7 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
6213, 16, 61syl2anc 583 . . . . . 6 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
6362ineq1d 4142 . . . . 5 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
64 indir 4206 . . . . 5 ((ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
6563, 64eqtrdi 2795 . . . 4 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
66 fz0ssnn0 13280 . . . . . . . . . 10 (0...(♯‘𝑊)) ⊆ ℕ0
6766, 39sselid 3915 . . . . . . . . 9 (𝜑𝐸 ∈ ℕ0)
68 pfxval 14314 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ ℕ0) → (𝑊 prefix 𝐸) = (𝑊 substr ⟨0, 𝐸⟩))
6911, 67, 68syl2anc 583 . . . . . . . 8 (𝜑 → (𝑊 prefix 𝐸) = (𝑊 substr ⟨0, 𝐸⟩))
7069rneqd 5836 . . . . . . 7 (𝜑 → ran (𝑊 prefix 𝐸) = ran (𝑊 substr ⟨0, 𝐸⟩))
7170ineq1d 4142 . . . . . 6 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran (𝑊 substr ⟨0, 𝐸⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
72 0elfz 13282 . . . . . . . 8 (𝐸 ∈ ℕ0 → 0 ∈ (0...𝐸))
7367, 72syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0...𝐸))
74 elfzuz3 13182 . . . . . . . 8 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
75 eluzfz1 13192 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝐸) → 𝐸 ∈ (𝐸...(♯‘𝑊)))
7639, 74, 753syl 18 . . . . . . 7 (𝜑𝐸 ∈ (𝐸...(♯‘𝑊)))
77 eluzfz2 13193 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝐸) → (♯‘𝑊) ∈ (𝐸...(♯‘𝑊)))
7839, 74, 773syl 18 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ (𝐸...(♯‘𝑊)))
7911, 73, 39, 27, 76, 78swrdrndisj 31131 . . . . . 6 (𝜑 → (ran (𝑊 substr ⟨0, 𝐸⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
8071, 79eqtrd 2778 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
81 incom 4131 . . . . . 6 (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩)
8243ineq2d 4143 . . . . . . 7 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩) = (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}))
83 swrdrn2 31128 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ⊆ ran 𝑊)
8411, 39, 59, 83syl3anc 1369 . . . . . . . . . 10 (𝜑 → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ⊆ ran 𝑊)
8584ssrind 4166 . . . . . . . . 9 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ (ran 𝑊 ∩ {𝐼}))
8685, 50sseqtrd 3957 . . . . . . . 8 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ ∅)
87 ss0 4329 . . . . . . . 8 ((ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ ∅ → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) = ∅)
8886, 87syl 17 . . . . . . 7 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) = ∅)
8982, 88eqtrd 2778 . . . . . 6 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩) = ∅)
9081, 89syl5eq 2791 . . . . 5 (𝜑 → (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
9180, 90uneq12d 4094 . . . 4 (𝜑 → ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = (∅ ∪ ∅))
92 unidm 4082 . . . . 5 (∅ ∪ ∅) = ∅
9392a1i 11 . . . 4 (𝜑 → (∅ ∪ ∅) = ∅)
9465, 91, 933eqtrd 2782 . . 3 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
951, 18, 20, 55, 60, 94ccatf1 31125 . 2 (𝜑 → (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)):dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))–1-1𝐷)
96 cycpmco2.1 . . . 4 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
97 ovexd 7290 . . . . . 6 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
9828, 97eqeltrid 2843 . . . . 5 (𝜑𝐸 ∈ V)
99 splval 14392 . . . . 5 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1003, 98, 98, 16, 99syl13anc 1370 . . . 4 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
10196, 100syl5eq 2791 . . 3 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
102101dmeqd 5803 . . 3 (𝜑 → dom 𝑈 = dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
103 eqidd 2739 . . 3 (𝜑𝐷 = 𝐷)
104101, 102, 103f1eq123d 6692 . 2 (𝜑 → (𝑈:dom 𝑈1-1𝐷 ↔ (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)):dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))–1-1𝐷))
10595, 104mpbird 256 1 (𝜑𝑈:dom 𝑈1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  cop 4564  cotp 4566  ccnv 5579  dom cdm 5580  ran crn 5581  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  0cn0 12163  cuz 12511  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228   substr csubstr 14281   prefix cpfx 14311   splice csplice 14390  Basecbs 16840  SymGrpcsymg 18889  toCycctocyc 31275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-csh 14430  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-efmnd 18423  df-symg 18890  df-tocyc 31276
This theorem is referenced by:  cycpmco2lem4  31298  cycpmco2lem5  31299  cycpmco2lem6  31300  cycpmco2lem7  31301  cycpmco2  31302
  Copyright terms: Public domain W3C validator