Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmco2f1 Structured version   Visualization version   GIF version

Theorem cycpmco2f1 31379
Description: The word U used in cycpmco2 31388 is injective, so it can represent a cycle and form a cyclic permutation (𝑀𝑈). (Contributed by Thierry Arnoux, 4-Jan-2024.)
Hypotheses
Ref Expression
cycpmco2.c 𝑀 = (toCyc‘𝐷)
cycpmco2.s 𝑆 = (SymGrp‘𝐷)
cycpmco2.d (𝜑𝐷𝑉)
cycpmco2.w (𝜑𝑊 ∈ dom 𝑀)
cycpmco2.i (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
cycpmco2.j (𝜑𝐽 ∈ ran 𝑊)
cycpmco2.e 𝐸 = ((𝑊𝐽) + 1)
cycpmco2.1 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
Assertion
Ref Expression
cycpmco2f1 (𝜑𝑈:dom 𝑈1-1𝐷)

Proof of Theorem cycpmco2f1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cycpmco2.d . . 3 (𝜑𝐷𝑉)
2 ssrab2 4018 . . . . . 6 {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ⊆ Word 𝐷
3 cycpmco2.w . . . . . . 7 (𝜑𝑊 ∈ dom 𝑀)
4 cycpmco2.c . . . . . . . . . 10 𝑀 = (toCyc‘𝐷)
5 cycpmco2.s . . . . . . . . . 10 𝑆 = (SymGrp‘𝐷)
6 eqid 2740 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
74, 5, 6tocycf 31372 . . . . . . . . 9 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
81, 7syl 17 . . . . . . . 8 (𝜑𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶(Base‘𝑆))
98fdmd 6608 . . . . . . 7 (𝜑 → dom 𝑀 = {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
103, 9eleqtrd 2843 . . . . . 6 (𝜑𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
112, 10sselid 3924 . . . . 5 (𝜑𝑊 ∈ Word 𝐷)
12 pfxcl 14380 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
1311, 12syl 17 . . . 4 (𝜑 → (𝑊 prefix 𝐸) ∈ Word 𝐷)
14 cycpmco2.i . . . . . 6 (𝜑𝐼 ∈ (𝐷 ∖ ran 𝑊))
1514eldifad 3904 . . . . 5 (𝜑𝐼𝐷)
1615s1cld 14298 . . . 4 (𝜑 → ⟨“𝐼”⟩ ∈ Word 𝐷)
17 ccatcl 14267 . . . 4 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
1813, 16, 17syl2anc 584 . . 3 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∈ Word 𝐷)
19 swrdcl 14348 . . . 4 (𝑊 ∈ Word 𝐷 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
2011, 19syl 17 . . 3 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∈ Word 𝐷)
21 id 22 . . . . . . . . 9 (𝑤 = 𝑊𝑤 = 𝑊)
22 dmeq 5810 . . . . . . . . 9 (𝑤 = 𝑊 → dom 𝑤 = dom 𝑊)
23 eqidd 2741 . . . . . . . . 9 (𝑤 = 𝑊𝐷 = 𝐷)
2421, 22, 23f1eq123d 6705 . . . . . . . 8 (𝑤 = 𝑊 → (𝑤:dom 𝑤1-1𝐷𝑊:dom 𝑊1-1𝐷))
2524elrab 3626 . . . . . . 7 (𝑊 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2610, 25sylib 217 . . . . . 6 (𝜑 → (𝑊 ∈ Word 𝐷𝑊:dom 𝑊1-1𝐷))
2726simprd 496 . . . . 5 (𝜑𝑊:dom 𝑊1-1𝐷)
28 cycpmco2.e . . . . . 6 𝐸 = ((𝑊𝐽) + 1)
29 f1cnv 6736 . . . . . . . . . 10 (𝑊:dom 𝑊1-1𝐷𝑊:ran 𝑊1-1-onto→dom 𝑊)
30 f1of 6713 . . . . . . . . . 10 (𝑊:ran 𝑊1-1-onto→dom 𝑊𝑊:ran 𝑊⟶dom 𝑊)
3127, 29, 303syl 18 . . . . . . . . 9 (𝜑𝑊:ran 𝑊⟶dom 𝑊)
32 cycpmco2.j . . . . . . . . 9 (𝜑𝐽 ∈ ran 𝑊)
3331, 32ffvelrnd 6957 . . . . . . . 8 (𝜑 → (𝑊𝐽) ∈ dom 𝑊)
34 wrddm 14214 . . . . . . . . 9 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
3511, 34syl 17 . . . . . . . 8 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
3633, 35eleqtrd 2843 . . . . . . 7 (𝜑 → (𝑊𝐽) ∈ (0..^(♯‘𝑊)))
37 fzofzp1 13474 . . . . . . 7 ((𝑊𝐽) ∈ (0..^(♯‘𝑊)) → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3836, 37syl 17 . . . . . 6 (𝜑 → ((𝑊𝐽) + 1) ∈ (0...(♯‘𝑊)))
3928, 38eqeltrid 2845 . . . . 5 (𝜑𝐸 ∈ (0...(♯‘𝑊)))
4011, 27, 39pfxf1 31204 . . . 4 (𝜑 → (𝑊 prefix 𝐸):dom (𝑊 prefix 𝐸)–1-1𝐷)
4115s1f1 31205 . . . 4 (𝜑 → ⟨“𝐼”⟩:dom ⟨“𝐼”⟩–1-1𝐷)
42 s1rn 14294 . . . . . . 7 (𝐼𝐷 → ran ⟨“𝐼”⟩ = {𝐼})
4315, 42syl 17 . . . . . 6 (𝜑 → ran ⟨“𝐼”⟩ = {𝐼})
4443ineq2d 4152 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∩ {𝐼}))
45 pfxrn2 31202 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊))) → ran (𝑊 prefix 𝐸) ⊆ ran 𝑊)
4611, 39, 45syl2anc 584 . . . . . . . 8 (𝜑 → ran (𝑊 prefix 𝐸) ⊆ ran 𝑊)
4746ssrind 4175 . . . . . . 7 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ (ran 𝑊 ∩ {𝐼}))
4814eldifbd 3905 . . . . . . . 8 (𝜑 → ¬ 𝐼 ∈ ran 𝑊)
49 disjsn 4653 . . . . . . . 8 ((ran 𝑊 ∩ {𝐼}) = ∅ ↔ ¬ 𝐼 ∈ ran 𝑊)
5048, 49sylibr 233 . . . . . . 7 (𝜑 → (ran 𝑊 ∩ {𝐼}) = ∅)
5147, 50sseqtrd 3966 . . . . . 6 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ ∅)
52 ss0 4338 . . . . . 6 ((ran (𝑊 prefix 𝐸) ∩ {𝐼}) ⊆ ∅ → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) = ∅)
5351, 52syl 17 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ {𝐼}) = ∅)
5444, 53eqtrd 2780 . . . 4 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran ⟨“𝐼”⟩) = ∅)
551, 13, 16, 40, 41, 54ccatf1 31211 . . 3 (𝜑 → ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩):dom ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩)–1-1𝐷)
56 lencl 14226 . . . . 5 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
57 nn0fz0 13345 . . . . . 6 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
5857biimpi 215 . . . . 5 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
5911, 56, 583syl 18 . . . 4 (𝜑 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
6011, 39, 59, 27swrdf1 31216 . . 3 (𝜑 → (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩):dom (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)–1-1𝐷)
61 ccatrn 14284 . . . . . . 7 (((𝑊 prefix 𝐸) ∈ Word 𝐷 ∧ ⟨“𝐼”⟩ ∈ Word 𝐷) → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
6213, 16, 61syl2anc 584 . . . . . 6 (𝜑 → ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) = (ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩))
6362ineq1d 4151 . . . . 5 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
64 indir 4215 . . . . 5 ((ran (𝑊 prefix 𝐸) ∪ ran ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
6563, 64eqtrdi 2796 . . . 4 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))))
66 fz0ssnn0 13342 . . . . . . . . . 10 (0...(♯‘𝑊)) ⊆ ℕ0
6766, 39sselid 3924 . . . . . . . . 9 (𝜑𝐸 ∈ ℕ0)
68 pfxval 14376 . . . . . . . . 9 ((𝑊 ∈ Word 𝐷𝐸 ∈ ℕ0) → (𝑊 prefix 𝐸) = (𝑊 substr ⟨0, 𝐸⟩))
6911, 67, 68syl2anc 584 . . . . . . . 8 (𝜑 → (𝑊 prefix 𝐸) = (𝑊 substr ⟨0, 𝐸⟩))
7069rneqd 5845 . . . . . . 7 (𝜑 → ran (𝑊 prefix 𝐸) = ran (𝑊 substr ⟨0, 𝐸⟩))
7170ineq1d 4151 . . . . . 6 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran (𝑊 substr ⟨0, 𝐸⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
72 0elfz 13344 . . . . . . . 8 (𝐸 ∈ ℕ0 → 0 ∈ (0...𝐸))
7367, 72syl 17 . . . . . . 7 (𝜑 → 0 ∈ (0...𝐸))
74 elfzuz3 13244 . . . . . . . 8 (𝐸 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝐸))
75 eluzfz1 13254 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝐸) → 𝐸 ∈ (𝐸...(♯‘𝑊)))
7639, 74, 753syl 18 . . . . . . 7 (𝜑𝐸 ∈ (𝐸...(♯‘𝑊)))
77 eluzfz2 13255 . . . . . . . 8 ((♯‘𝑊) ∈ (ℤ𝐸) → (♯‘𝑊) ∈ (𝐸...(♯‘𝑊)))
7839, 74, 773syl 18 . . . . . . 7 (𝜑 → (♯‘𝑊) ∈ (𝐸...(♯‘𝑊)))
7911, 73, 39, 27, 76, 78swrdrndisj 31217 . . . . . 6 (𝜑 → (ran (𝑊 substr ⟨0, 𝐸⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
8071, 79eqtrd 2780 . . . . 5 (𝜑 → (ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
81 incom 4140 . . . . . 6 (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩)
8243ineq2d 4152 . . . . . . 7 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩) = (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}))
83 swrdrn2 31214 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝐷𝐸 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ⊆ ran 𝑊)
8411, 39, 59, 83syl3anc 1370 . . . . . . . . . 10 (𝜑 → ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ⊆ ran 𝑊)
8584ssrind 4175 . . . . . . . . 9 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ (ran 𝑊 ∩ {𝐼}))
8685, 50sseqtrd 3966 . . . . . . . 8 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ ∅)
87 ss0 4338 . . . . . . . 8 ((ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) ⊆ ∅ → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) = ∅)
8886, 87syl 17 . . . . . . 7 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ {𝐼}) = ∅)
8982, 88eqtrd 2780 . . . . . 6 (𝜑 → (ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩) ∩ ran ⟨“𝐼”⟩) = ∅)
9081, 89eqtrid 2792 . . . . 5 (𝜑 → (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
9180, 90uneq12d 4103 . . . 4 (𝜑 → ((ran (𝑊 prefix 𝐸) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) ∪ (ran ⟨“𝐼”⟩ ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))) = (∅ ∪ ∅))
92 unidm 4091 . . . . 5 (∅ ∪ ∅) = ∅
9392a1i 11 . . . 4 (𝜑 → (∅ ∪ ∅) = ∅)
9465, 91, 933eqtrd 2784 . . 3 (𝜑 → (ran ((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ∩ ran (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)) = ∅)
951, 18, 20, 55, 60, 94ccatf1 31211 . 2 (𝜑 → (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)):dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))–1-1𝐷)
96 cycpmco2.1 . . . 4 𝑈 = (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩)
97 ovexd 7304 . . . . . 6 (𝜑 → ((𝑊𝐽) + 1) ∈ V)
9828, 97eqeltrid 2845 . . . . 5 (𝜑𝐸 ∈ V)
99 splval 14454 . . . . 5 ((𝑊 ∈ dom 𝑀 ∧ (𝐸 ∈ V ∧ 𝐸 ∈ V ∧ ⟨“𝐼”⟩ ∈ Word 𝐷)) → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
1003, 98, 98, 16, 99syl13anc 1371 . . . 4 (𝜑 → (𝑊 splice ⟨𝐸, 𝐸, ⟨“𝐼”⟩⟩) = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
10196, 100eqtrid 2792 . . 3 (𝜑𝑈 = (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
102101dmeqd 5812 . . 3 (𝜑 → dom 𝑈 = dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)))
103 eqidd 2741 . . 3 (𝜑𝐷 = 𝐷)
104101, 102, 103f1eq123d 6705 . 2 (𝜑 → (𝑈:dom 𝑈1-1𝐷 ↔ (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩)):dom (((𝑊 prefix 𝐸) ++ ⟨“𝐼”⟩) ++ (𝑊 substr ⟨𝐸, (♯‘𝑊)⟩))–1-1𝐷))
10595, 104mpbird 256 1 (𝜑𝑈:dom 𝑈1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  {crab 3070  Vcvv 3431  cdif 3889  cun 3890  cin 3891  wss 3892  c0 4262  {csn 4567  cop 4573  cotp 4575  ccnv 5588  dom cdm 5589  ran crn 5590  wf 6427  1-1wf1 6428  1-1-ontowf1o 6430  cfv 6431  (class class class)co 7269  0cc0 10864  1c1 10865   + caddc 10867  0cn0 12225  cuz 12573  ...cfz 13230  ..^cfzo 13373  chash 14034  Word cword 14207   ++ cconcat 14263  ⟨“cs1 14290   substr csubstr 14343   prefix cpfx 14373   splice csplice 14452  Basecbs 16902  SymGrpcsymg 18964  toCycctocyc 31361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941  ax-pre-sup 10942
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-er 8473  df-map 8592  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712  df-sup 9171  df-inf 9172  df-card 9690  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-div 11625  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-5 12031  df-6 12032  df-7 12033  df-8 12034  df-9 12035  df-n0 12226  df-z 12312  df-uz 12574  df-rp 12722  df-fz 13231  df-fzo 13374  df-fl 13502  df-mod 13580  df-hash 14035  df-word 14208  df-concat 14264  df-s1 14291  df-substr 14344  df-pfx 14374  df-splice 14453  df-csh 14492  df-struct 16838  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-ress 16932  df-plusg 16965  df-tset 16971  df-efmnd 18498  df-symg 18965  df-tocyc 31362
This theorem is referenced by:  cycpmco2lem4  31384  cycpmco2lem5  31385  cycpmco2lem6  31386  cycpmco2lem7  31387  cycpmco2  31388
  Copyright terms: Public domain W3C validator