MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1co Structured version   Visualization version   GIF version

Theorem f1co 6796
Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.)
Assertion
Ref Expression
f1co ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)

Proof of Theorem f1co
StepHypRef Expression
1 f1cof1 6795 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐵)–1-1𝐶)
2 f1f 6784 . . . . . 6 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
3 fimacnv 6736 . . . . . 6 (𝐺:𝐴𝐵 → (𝐺𝐵) = 𝐴)
42, 3syl 17 . . . . 5 (𝐺:𝐴1-1𝐵 → (𝐺𝐵) = 𝐴)
54adantl 483 . . . 4 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐺𝐵) = 𝐴)
65eqcomd 2739 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → 𝐴 = (𝐺𝐵))
7 f1eq2 6780 . . 3 (𝐴 = (𝐺𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–1-1𝐶))
86, 7syl 17 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–1-1𝐶))
91, 8mpbird 257 1 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  ccnv 5674  cima 5678  ccom 5679  wf 6536  1-1wf1 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545
This theorem is referenced by:  f1oco  6853  f1cofveqaeqALT  7253  tposf12  8231  domtr  8999  domtrfil  9191  dfac12lem2  10135  fin23lem28  10331  pwfseqlem5  10654  cofth  17882  injsubmefmnd  18774  gsumzf1o  19772  cycpmconjv  32279  erdsze2lem2  34133  fcoresf1b  45715  fundcmpsurinjpreimafv  46011
  Copyright terms: Public domain W3C validator