| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1co | Structured version Visualization version GIF version | ||
| Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| f1co | ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1cof1 6729 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶) | |
| 2 | f1f 6719 | . . . . . 6 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
| 3 | fimacnv 6673 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (◡𝐺 “ 𝐵) = 𝐴) |
| 6 | 5 | eqcomd 2737 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | f1eq2 6715 | . . 3 ⊢ (𝐴 = (◡𝐺 “ 𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶)) |
| 9 | 1, 8 | mpbird 257 | 1 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ◡ccnv 5613 “ cima 5617 ∘ ccom 5618 ⟶wf 6477 –1-1→wf1 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 |
| This theorem is referenced by: f1oco 6786 f1cofveqaeqALT 7192 tposf12 8181 domtr 8929 domtrfil 9101 dfac12lem2 10036 fin23lem28 10231 pwfseqlem5 10554 cofth 17844 injsubmefmnd 18805 gsumzf1o 19824 cycpmconjv 33111 erdsze2lem2 35248 fcoresf1b 47109 fundcmpsurinjpreimafv 47447 |
| Copyright terms: Public domain | W3C validator |