| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1co | Structured version Visualization version GIF version | ||
| Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| f1co | ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1cof1 6814 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶) | |
| 2 | f1f 6804 | . . . . . 6 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
| 3 | fimacnv 6758 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (◡𝐺 “ 𝐵) = 𝐴) |
| 6 | 5 | eqcomd 2743 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | f1eq2 6800 | . . 3 ⊢ (𝐴 = (◡𝐺 “ 𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶)) |
| 9 | 1, 8 | mpbird 257 | 1 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ◡ccnv 5684 “ cima 5688 ∘ ccom 5689 ⟶wf 6557 –1-1→wf1 6558 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 |
| This theorem is referenced by: f1oco 6871 f1cofveqaeqALT 7279 tposf12 8276 domtr 9047 domtrfil 9232 dfac12lem2 10185 fin23lem28 10380 pwfseqlem5 10703 cofth 17982 injsubmefmnd 18910 gsumzf1o 19930 cycpmconjv 33162 erdsze2lem2 35209 fcoresf1b 47082 fundcmpsurinjpreimafv 47395 |
| Copyright terms: Public domain | W3C validator |