MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1co Structured version   Visualization version   GIF version

Theorem f1co 6796
Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.)
Assertion
Ref Expression
f1co ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)

Proof of Theorem f1co
StepHypRef Expression
1 f1cof1 6795 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐵)–1-1𝐶)
2 f1f 6784 . . . . . 6 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
3 fimacnv 6736 . . . . . 6 (𝐺:𝐴𝐵 → (𝐺𝐵) = 𝐴)
42, 3syl 17 . . . . 5 (𝐺:𝐴1-1𝐵 → (𝐺𝐵) = 𝐴)
54adantl 482 . . . 4 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐺𝐵) = 𝐴)
65eqcomd 2738 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → 𝐴 = (𝐺𝐵))
7 f1eq2 6780 . . 3 (𝐴 = (𝐺𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–1-1𝐶))
86, 7syl 17 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–1-1𝐶))
91, 8mpbird 256 1 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  ccnv 5674  cima 5678  ccom 5679  wf 6536  1-1wf1 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545
This theorem is referenced by:  f1oco  6853  f1cofveqaeqALT  7254  tposf12  8232  domtr  8999  domtrfil  9191  dfac12lem2  10135  fin23lem28  10331  pwfseqlem5  10654  cofth  17882  injsubmefmnd  18774  gsumzf1o  19774  cycpmconjv  32288  erdsze2lem2  34183  fcoresf1b  45766  fundcmpsurinjpreimafv  46062
  Copyright terms: Public domain W3C validator