MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1co Structured version   Visualization version   GIF version

Theorem f1co 6749
Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.)
Assertion
Ref Expression
f1co ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)

Proof of Theorem f1co
StepHypRef Expression
1 f1cof1 6748 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐵)–1-1𝐶)
2 f1f 6738 . . . . . 6 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
3 fimacnv 6692 . . . . . 6 (𝐺:𝐴𝐵 → (𝐺𝐵) = 𝐴)
42, 3syl 17 . . . . 5 (𝐺:𝐴1-1𝐵 → (𝐺𝐵) = 𝐴)
54adantl 481 . . . 4 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐺𝐵) = 𝐴)
65eqcomd 2735 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → 𝐴 = (𝐺𝐵))
7 f1eq2 6734 . . 3 (𝐴 = (𝐺𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–1-1𝐶))
86, 7syl 17 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–1-1𝐶))
91, 8mpbird 257 1 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  ccnv 5630  cima 5634  ccom 5635  wf 6495  1-1wf1 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504
This theorem is referenced by:  f1oco  6805  f1cofveqaeqALT  7215  tposf12  8207  domtr  8955  domtrfil  9133  dfac12lem2  10074  fin23lem28  10269  pwfseqlem5  10592  cofth  17875  injsubmefmnd  18800  gsumzf1o  19818  cycpmconjv  33072  erdsze2lem2  35164  fcoresf1b  47044  fundcmpsurinjpreimafv  47382
  Copyright terms: Public domain W3C validator