MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1co Structured version   Visualization version   GIF version

Theorem f1co 6799
Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.)
Assertion
Ref Expression
f1co ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)

Proof of Theorem f1co
StepHypRef Expression
1 f1cof1 6798 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐵)–1-1𝐶)
2 f1f 6787 . . . . . 6 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
3 fimacnv 6739 . . . . . 6 (𝐺:𝐴𝐵 → (𝐺𝐵) = 𝐴)
42, 3syl 17 . . . . 5 (𝐺:𝐴1-1𝐵 → (𝐺𝐵) = 𝐴)
54adantl 481 . . . 4 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐺𝐵) = 𝐴)
65eqcomd 2737 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → 𝐴 = (𝐺𝐵))
7 f1eq2 6783 . . 3 (𝐴 = (𝐺𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–1-1𝐶))
86, 7syl 17 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–1-1𝐶))
91, 8mpbird 257 1 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  ccnv 5675  cima 5679  ccom 5680  wf 6539  1-1wf1 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548
This theorem is referenced by:  f1oco  6856  f1cofveqaeqALT  7261  tposf12  8240  domtr  9007  domtrfil  9199  dfac12lem2  10143  fin23lem28  10339  pwfseqlem5  10662  cofth  17891  injsubmefmnd  18815  gsumzf1o  19822  cycpmconjv  32572  erdsze2lem2  34494  fcoresf1b  46079  fundcmpsurinjpreimafv  46375
  Copyright terms: Public domain W3C validator