Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1co | Structured version Visualization version GIF version |
Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
f1co | ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1cof1 6681 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶) | |
2 | f1f 6670 | . . . . . 6 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
3 | fimacnv 6622 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
5 | 4 | adantl 482 | . . . 4 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (◡𝐺 “ 𝐵) = 𝐴) |
6 | 5 | eqcomd 2744 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
7 | f1eq2 6666 | . . 3 ⊢ (𝐴 = (◡𝐺 “ 𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶)) |
9 | 1, 8 | mpbird 256 | 1 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ◡ccnv 5588 “ cima 5592 ∘ ccom 5593 ⟶wf 6429 –1-1→wf1 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 |
This theorem is referenced by: f1oco 6739 f1cofveqaeqALT 7132 tposf12 8067 domtr 8793 domtrfil 8978 dfac12lem2 9900 fin23lem28 10096 pwfseqlem5 10419 cofth 17651 injsubmefmnd 18536 gsumzf1o 19513 cycpmconjv 31409 erdsze2lem2 33166 fcoresf1b 44564 fundcmpsurinjpreimafv 44860 |
Copyright terms: Public domain | W3C validator |