![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1co | Structured version Visualization version GIF version |
Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
f1co | ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1cof1 6750 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶) | |
2 | f1f 6739 | . . . . . 6 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
3 | fimacnv 6691 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
5 | 4 | adantl 483 | . . . 4 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (◡𝐺 “ 𝐵) = 𝐴) |
6 | 5 | eqcomd 2743 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
7 | f1eq2 6735 | . . 3 ⊢ (𝐴 = (◡𝐺 “ 𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶)) |
9 | 1, 8 | mpbird 257 | 1 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ◡ccnv 5633 “ cima 5637 ∘ ccom 5638 ⟶wf 6493 –1-1→wf1 6494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 |
This theorem is referenced by: f1oco 6808 f1cofveqaeqALT 7207 tposf12 8183 domtr 8948 domtrfil 9140 dfac12lem2 10081 fin23lem28 10277 pwfseqlem5 10600 cofth 17823 injsubmefmnd 18708 gsumzf1o 19690 cycpmconjv 31994 erdsze2lem2 33801 fcoresf1b 45311 fundcmpsurinjpreimafv 45607 |
Copyright terms: Public domain | W3C validator |