MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1co Structured version   Visualization version   GIF version

Theorem f1co 6784
Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.)
Assertion
Ref Expression
f1co ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)

Proof of Theorem f1co
StepHypRef Expression
1 f1cof1 6783 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):(𝐺𝐵)–1-1𝐶)
2 f1f 6773 . . . . . 6 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
3 fimacnv 6727 . . . . . 6 (𝐺:𝐴𝐵 → (𝐺𝐵) = 𝐴)
42, 3syl 17 . . . . 5 (𝐺:𝐴1-1𝐵 → (𝐺𝐵) = 𝐴)
54adantl 481 . . . 4 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐺𝐵) = 𝐴)
65eqcomd 2741 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → 𝐴 = (𝐺𝐵))
7 f1eq2 6769 . . 3 (𝐴 = (𝐺𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–1-1𝐶))
86, 7syl 17 . 2 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝐹𝐺):𝐴1-1𝐶 ↔ (𝐹𝐺):(𝐺𝐵)–1-1𝐶))
91, 8mpbird 257 1 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  ccnv 5653  cima 5657  ccom 5658  wf 6526  1-1wf1 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535
This theorem is referenced by:  f1oco  6840  f1cofveqaeqALT  7250  tposf12  8248  domtr  9019  domtrfil  9204  dfac12lem2  10157  fin23lem28  10352  pwfseqlem5  10675  cofth  17948  injsubmefmnd  18873  gsumzf1o  19891  cycpmconjv  33099  erdsze2lem2  35172  fcoresf1b  47047  fundcmpsurinjpreimafv  47370
  Copyright terms: Public domain W3C validator