| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1co | Structured version Visualization version GIF version | ||
| Description: Composition of one-to-one functions when the codomain of the first matches the domain of the second. Exercise 30 of [TakeutiZaring] p. 25. (Contributed by NM, 28-May-1998.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| f1co | ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1cof1 6783 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶) | |
| 2 | f1f 6773 | . . . . . 6 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
| 3 | fimacnv 6727 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → (◡𝐺 “ 𝐵) = 𝐴) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (◡𝐺 “ 𝐵) = 𝐴) |
| 6 | 5 | eqcomd 2741 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | f1eq2 6769 | . . 3 ⊢ (𝐴 = (◡𝐺 “ 𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)–1-1→𝐶)) |
| 9 | 1, 8 | mpbird 257 | 1 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ◡ccnv 5653 “ cima 5657 ∘ ccom 5658 ⟶wf 6526 –1-1→wf1 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 |
| This theorem is referenced by: f1oco 6840 f1cofveqaeqALT 7250 tposf12 8248 domtr 9019 domtrfil 9204 dfac12lem2 10157 fin23lem28 10352 pwfseqlem5 10675 cofth 17948 injsubmefmnd 18873 gsumzf1o 19891 cycpmconjv 33099 erdsze2lem2 35172 fcoresf1b 47047 fundcmpsurinjpreimafv 47370 |
| Copyright terms: Public domain | W3C validator |