Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocof1ob2 Structured version   Visualization version   GIF version

Theorem f1ocof1ob2 47111
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. Symmetric version of f1ocof1ob 47110 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 7-Oct-2024.)
Assertion
Ref Expression
f1ocof1ob2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1-onto𝐶𝐺:𝐶1-1-onto𝐷)))

Proof of Theorem f1ocof1ob2
StepHypRef Expression
1 f1ocof1ob 47110 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))
2 f1f1orn 6829 . . . . . 6 (𝐹:𝐴1-1𝐶𝐹:𝐴1-1-onto→ran 𝐹)
3 f1oeq3 6808 . . . . . 6 (ran 𝐹 = 𝐶 → (𝐹:𝐴1-1-onto→ran 𝐹𝐹:𝐴1-1-onto𝐶))
42, 3imbitrid 244 . . . . 5 (ran 𝐹 = 𝐶 → (𝐹:𝐴1-1𝐶𝐹:𝐴1-1-onto𝐶))
543ad2ant3 1135 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴1-1𝐶𝐹:𝐴1-1-onto𝐶))
6 f1of1 6817 . . . 4 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴1-1𝐶)
75, 6impbid1 225 . . 3 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴1-1𝐶𝐹:𝐴1-1-onto𝐶))
87anbi1d 631 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷) ↔ (𝐹:𝐴1-1-onto𝐶𝐺:𝐶1-1-onto𝐷)))
91, 8bitrd 279 1 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1-onto𝐶𝐺:𝐶1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  ran crn 5655  ccom 5658  wf 6527  1-1wf1 6528  1-1-ontowf1o 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator