Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocof1ob2 Structured version   Visualization version   GIF version

Theorem f1ocof1ob2 46275
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. Symmetric version of f1ocof1ob 46274 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 7-Oct-2024.)
Assertion
Ref Expression
f1ocof1ob2 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1-onto→𝐢 ∧ 𝐺:𝐢–1-1-onto→𝐷)))

Proof of Theorem f1ocof1ob2
StepHypRef Expression
1 f1ocof1ob 46274 . 2 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐢 ∧ 𝐺:𝐢–1-1-onto→𝐷)))
2 f1f1orn 6834 . . . . . 6 (𝐹:𝐴–1-1→𝐢 β†’ 𝐹:𝐴–1-1-ontoβ†’ran 𝐹)
3 f1oeq3 6813 . . . . . 6 (ran 𝐹 = 𝐢 β†’ (𝐹:𝐴–1-1-ontoβ†’ran 𝐹 ↔ 𝐹:𝐴–1-1-onto→𝐢))
42, 3imbitrid 243 . . . . 5 (ran 𝐹 = 𝐢 β†’ (𝐹:𝐴–1-1→𝐢 β†’ 𝐹:𝐴–1-1-onto→𝐢))
543ad2ant3 1132 . . . 4 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ (𝐹:𝐴–1-1→𝐢 β†’ 𝐹:𝐴–1-1-onto→𝐢))
6 f1of1 6822 . . . 4 (𝐹:𝐴–1-1-onto→𝐢 β†’ 𝐹:𝐴–1-1→𝐢)
75, 6impbid1 224 . . 3 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ (𝐹:𝐴–1-1→𝐢 ↔ 𝐹:𝐴–1-1-onto→𝐢))
87anbi1d 629 . 2 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐹:𝐴–1-1→𝐢 ∧ 𝐺:𝐢–1-1-onto→𝐷) ↔ (𝐹:𝐴–1-1-onto→𝐢 ∧ 𝐺:𝐢–1-1-onto→𝐷)))
91, 8bitrd 279 1 ((𝐹:𝐴⟢𝐡 ∧ 𝐺:𝐢⟢𝐷 ∧ ran 𝐹 = 𝐢) β†’ ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1-onto→𝐢 ∧ 𝐺:𝐢–1-1-onto→𝐷)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533  ran crn 5667   ∘ ccom 5670  βŸΆwf 6529  β€“1-1β†’wf1 6530  β€“1-1-ontoβ†’wf1o 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator