![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocof1ob2 | Structured version Visualization version GIF version |
Description: If the range of πΉ equals the domain of πΊ, then the composition (πΊ β πΉ) is bijective iff πΉ and πΊ are both bijective. Symmetric version of f1ocof1ob 46274 including the fact that πΉ is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
f1ocof1ob2 | β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β ((πΊ β πΉ):π΄β1-1-ontoβπ· β (πΉ:π΄β1-1-ontoβπΆ β§ πΊ:πΆβ1-1-ontoβπ·))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocof1ob 46274 | . 2 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β ((πΊ β πΉ):π΄β1-1-ontoβπ· β (πΉ:π΄β1-1βπΆ β§ πΊ:πΆβ1-1-ontoβπ·))) | |
2 | f1f1orn 6834 | . . . . . 6 β’ (πΉ:π΄β1-1βπΆ β πΉ:π΄β1-1-ontoβran πΉ) | |
3 | f1oeq3 6813 | . . . . . 6 β’ (ran πΉ = πΆ β (πΉ:π΄β1-1-ontoβran πΉ β πΉ:π΄β1-1-ontoβπΆ)) | |
4 | 2, 3 | imbitrid 243 | . . . . 5 β’ (ran πΉ = πΆ β (πΉ:π΄β1-1βπΆ β πΉ:π΄β1-1-ontoβπΆ)) |
5 | 4 | 3ad2ant3 1132 | . . . 4 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β (πΉ:π΄β1-1βπΆ β πΉ:π΄β1-1-ontoβπΆ)) |
6 | f1of1 6822 | . . . 4 β’ (πΉ:π΄β1-1-ontoβπΆ β πΉ:π΄β1-1βπΆ) | |
7 | 5, 6 | impbid1 224 | . . 3 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β (πΉ:π΄β1-1βπΆ β πΉ:π΄β1-1-ontoβπΆ)) |
8 | 7 | anbi1d 629 | . 2 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β ((πΉ:π΄β1-1βπΆ β§ πΊ:πΆβ1-1-ontoβπ·) β (πΉ:π΄β1-1-ontoβπΆ β§ πΊ:πΆβ1-1-ontoβπ·))) |
9 | 1, 8 | bitrd 279 | 1 β’ ((πΉ:π΄βΆπ΅ β§ πΊ:πΆβΆπ· β§ ran πΉ = πΆ) β ((πΊ β πΉ):π΄β1-1-ontoβπ· β (πΉ:π΄β1-1-ontoβπΆ β§ πΊ:πΆβ1-1-ontoβπ·))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 ran crn 5667 β ccom 5670 βΆwf 6529 β1-1βwf1 6530 β1-1-ontoβwf1o 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |