Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocof1ob2 Structured version   Visualization version   GIF version

Theorem f1ocof1ob2 46491
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. Symmetric version of f1ocof1ob 46490 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 7-Oct-2024.)
Assertion
Ref Expression
f1ocof1ob2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1-onto𝐶𝐺:𝐶1-1-onto𝐷)))

Proof of Theorem f1ocof1ob2
StepHypRef Expression
1 f1ocof1ob 46490 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷)))
2 f1f1orn 6855 . . . . . 6 (𝐹:𝐴1-1𝐶𝐹:𝐴1-1-onto→ran 𝐹)
3 f1oeq3 6834 . . . . . 6 (ran 𝐹 = 𝐶 → (𝐹:𝐴1-1-onto→ran 𝐹𝐹:𝐴1-1-onto𝐶))
42, 3imbitrid 243 . . . . 5 (ran 𝐹 = 𝐶 → (𝐹:𝐴1-1𝐶𝐹:𝐴1-1-onto𝐶))
543ad2ant3 1132 . . . 4 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴1-1𝐶𝐹:𝐴1-1-onto𝐶))
6 f1of1 6843 . . . 4 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴1-1𝐶)
75, 6impbid1 224 . . 3 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴1-1𝐶𝐹:𝐴1-1-onto𝐶))
87anbi1d 629 . 2 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐹:𝐴1-1𝐶𝐺:𝐶1-1-onto𝐷) ↔ (𝐹:𝐴1-1-onto𝐶𝐺:𝐶1-1-onto𝐷)))
91, 8bitrd 278 1 ((𝐹:𝐴𝐵𝐺:𝐶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺𝐹):𝐴1-1-onto𝐷 ↔ (𝐹:𝐴1-1-onto𝐶𝐺:𝐶1-1-onto𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  ran crn 5683  ccom 5686  wf 6549  1-1wf1 6550  1-1-ontowf1o 6552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator