Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocof1ob2 | Structured version Visualization version GIF version |
Description: If the range of 𝐹 equals the domain of 𝐺, then the composition (𝐺 ∘ 𝐹) is bijective iff 𝐹 and 𝐺 are both bijective. Symmetric version of f1ocof1ob 44573 including the fact that 𝐹 is a surjection onto its range. (Contributed by GL and AV, 20-Sep-2024.) (Proof shortened by AV, 7-Oct-2024.) |
Ref | Expression |
---|---|
f1ocof1ob2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1-onto→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocof1ob 44573 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) | |
2 | f1f1orn 6727 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐶 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
3 | f1oeq3 6706 | . . . . . 6 ⊢ (ran 𝐹 = 𝐶 → (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ 𝐹:𝐴–1-1-onto→𝐶)) | |
4 | 2, 3 | syl5ib 243 | . . . . 5 ⊢ (ran 𝐹 = 𝐶 → (𝐹:𝐴–1-1→𝐶 → 𝐹:𝐴–1-1-onto→𝐶)) |
5 | 4 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴–1-1→𝐶 → 𝐹:𝐴–1-1-onto→𝐶)) |
6 | f1of1 6715 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐶 → 𝐹:𝐴–1-1→𝐶) | |
7 | 5, 6 | impbid1 224 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐴–1-1-onto→𝐶)) |
8 | 7 | anbi1d 630 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐹:𝐴–1-1→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷) ↔ (𝐹:𝐴–1-1-onto→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
9 | 1, 8 | bitrd 278 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐶⟶𝐷 ∧ ran 𝐹 = 𝐶) → ((𝐺 ∘ 𝐹):𝐴–1-1-onto→𝐷 ↔ (𝐹:𝐴–1-1-onto→𝐶 ∧ 𝐺:𝐶–1-1-onto→𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ran crn 5590 ∘ ccom 5593 ⟶wf 6429 –1-1→wf1 6430 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |