| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1oresf1o | Structured version Visualization version GIF version | ||
| Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| f1oresf1o.1 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| f1oresf1o.2 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| f1oresf1o.3 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| f1oresf1o | ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oresf1o.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
| 2 | f1of1 6770 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
| 4 | f1oresf1o.2 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
| 5 | f1ores 6785 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷)) |
| 7 | f1ofun 6773 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
| 9 | f1odm 6775 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) | |
| 10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 11 | 4, 10 | sseqtrrd 3969 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
| 12 | dfimafn 6893 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐷 ⊆ dom 𝐹) → (𝐹 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦}) | |
| 13 | 8, 11, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦}) |
| 14 | f1oresf1o.3 | . . . . . 6 ⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) | |
| 15 | 14 | abbidv 2799 | . . . . 5 ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜒)}) |
| 16 | df-rab 3398 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜒} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜒)} | |
| 17 | 15, 16 | eqtr4di 2786 | . . . 4 ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦} = {𝑦 ∈ 𝐵 ∣ 𝜒}) |
| 18 | 13, 17 | eqtr2d 2769 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} = (𝐹 “ 𝐷)) |
| 19 | 18 | f1oeq3d 6768 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷))) |
| 20 | 6, 19 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3058 {crab 3397 ⊆ wss 3899 dom cdm 5621 ↾ cres 5623 “ cima 5624 Fun wfun 6483 –1-1→wf1 6486 –1-1-onto→wf1o 6488 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 |
| This theorem is referenced by: f1oresf1o2 47405 |
| Copyright terms: Public domain | W3C validator |