Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1oresf1o Structured version   Visualization version   GIF version

Theorem f1oresf1o 47240
Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.)
Hypotheses
Ref Expression
f1oresf1o.1 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresf1o.2 (𝜑𝐷𝐴)
f1oresf1o.3 (𝜑 → (∃𝑥𝐷 (𝐹𝑥) = 𝑦 ↔ (𝑦𝐵𝜒)))
Assertion
Ref Expression
f1oresf1o (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑦,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜒(𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem f1oresf1o
StepHypRef Expression
1 f1oresf1o.1 . . . 4 (𝜑𝐹:𝐴1-1-onto𝐵)
2 f1of1 6848 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
31, 2syl 17 . . 3 (𝜑𝐹:𝐴1-1𝐵)
4 f1oresf1o.2 . . 3 (𝜑𝐷𝐴)
5 f1ores 6863 . . 3 ((𝐹:𝐴1-1𝐵𝐷𝐴) → (𝐹𝐷):𝐷1-1-onto→(𝐹𝐷))
63, 4, 5syl2anc 584 . 2 (𝜑 → (𝐹𝐷):𝐷1-1-onto→(𝐹𝐷))
7 f1ofun 6851 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
81, 7syl 17 . . . . 5 (𝜑 → Fun 𝐹)
9 f1odm 6853 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
101, 9syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
114, 10sseqtrrd 4037 . . . . 5 (𝜑𝐷 ⊆ dom 𝐹)
12 dfimafn 6971 . . . . 5 ((Fun 𝐹𝐷 ⊆ dom 𝐹) → (𝐹𝐷) = {𝑦 ∣ ∃𝑥𝐷 (𝐹𝑥) = 𝑦})
138, 11, 12syl2anc 584 . . . 4 (𝜑 → (𝐹𝐷) = {𝑦 ∣ ∃𝑥𝐷 (𝐹𝑥) = 𝑦})
14 f1oresf1o.3 . . . . . 6 (𝜑 → (∃𝑥𝐷 (𝐹𝑥) = 𝑦 ↔ (𝑦𝐵𝜒)))
1514abbidv 2806 . . . . 5 (𝜑 → {𝑦 ∣ ∃𝑥𝐷 (𝐹𝑥) = 𝑦} = {𝑦 ∣ (𝑦𝐵𝜒)})
16 df-rab 3434 . . . . 5 {𝑦𝐵𝜒} = {𝑦 ∣ (𝑦𝐵𝜒)}
1715, 16eqtr4di 2793 . . . 4 (𝜑 → {𝑦 ∣ ∃𝑥𝐷 (𝐹𝑥) = 𝑦} = {𝑦𝐵𝜒})
1813, 17eqtr2d 2776 . . 3 (𝜑 → {𝑦𝐵𝜒} = (𝐹𝐷))
1918f1oeq3d 6846 . 2 (𝜑 → ((𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹𝐷):𝐷1-1-onto→(𝐹𝐷)))
206, 19mpbird 257 1 (𝜑 → (𝐹𝐷):𝐷1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wrex 3068  {crab 3433  wss 3963  dom cdm 5689  cres 5691  cima 5692  Fun wfun 6557  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571
This theorem is referenced by:  f1oresf1o2  47241
  Copyright terms: Public domain W3C validator