Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1oresf1o | Structured version Visualization version GIF version |
Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.) |
Ref | Expression |
---|---|
f1oresf1o.1 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
f1oresf1o.2 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
f1oresf1o.3 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
f1oresf1o | ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oresf1o.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
2 | f1of1 6699 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
4 | f1oresf1o.2 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
5 | f1ores 6714 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷)) | |
6 | 3, 4, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷)) |
7 | f1ofun 6702 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
9 | f1odm 6704 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) | |
10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
11 | 4, 10 | sseqtrrd 3958 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
12 | dfimafn 6814 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐷 ⊆ dom 𝐹) → (𝐹 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦}) | |
13 | 8, 11, 12 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦}) |
14 | f1oresf1o.3 | . . . . . 6 ⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) | |
15 | 14 | abbidv 2808 | . . . . 5 ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜒)}) |
16 | df-rab 3072 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜒} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜒)} | |
17 | 15, 16 | eqtr4di 2797 | . . . 4 ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦} = {𝑦 ∈ 𝐵 ∣ 𝜒}) |
18 | 13, 17 | eqtr2d 2779 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} = (𝐹 “ 𝐷)) |
19 | 18 | f1oeq3d 6697 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷))) |
20 | 6, 19 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 {crab 3067 ⊆ wss 3883 dom cdm 5580 ↾ cres 5582 “ cima 5583 Fun wfun 6412 –1-1→wf1 6415 –1-1-onto→wf1o 6417 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: f1oresf1o2 44670 |
Copyright terms: Public domain | W3C validator |