| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1oresf1o | Structured version Visualization version GIF version | ||
| Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.) |
| Ref | Expression |
|---|---|
| f1oresf1o.1 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| f1oresf1o.2 | ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| f1oresf1o.3 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| f1oresf1o | ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oresf1o.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | |
| 2 | f1of1 6826 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
| 4 | f1oresf1o.2 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) | |
| 5 | f1ores 6841 | . . 3 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷)) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷)) |
| 7 | f1ofun 6829 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
| 9 | f1odm 6831 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) | |
| 10 | 1, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 11 | 4, 10 | sseqtrrd 4001 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ dom 𝐹) |
| 12 | dfimafn 6950 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐷 ⊆ dom 𝐹) → (𝐹 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦}) | |
| 13 | 8, 11, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦}) |
| 14 | f1oresf1o.3 | . . . . . 6 ⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) | |
| 15 | 14 | abbidv 2800 | . . . . 5 ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜒)}) |
| 16 | df-rab 3420 | . . . . 5 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜒} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜒)} | |
| 17 | 15, 16 | eqtr4di 2787 | . . . 4 ⊢ (𝜑 → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦} = {𝑦 ∈ 𝐵 ∣ 𝜒}) |
| 18 | 13, 17 | eqtr2d 2770 | . . 3 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝜒} = (𝐹 “ 𝐷)) |
| 19 | 18 | f1oeq3d 6824 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ 𝐷):𝐷–1-1-onto→(𝐹 “ 𝐷))) |
| 20 | 6, 19 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∃wrex 3059 {crab 3419 ⊆ wss 3931 dom cdm 5665 ↾ cres 5667 “ cima 5668 Fun wfun 6534 –1-1→wf1 6537 –1-1-onto→wf1o 6539 ‘cfv 6540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 |
| This theorem is referenced by: f1oresf1o2 47237 |
| Copyright terms: Public domain | W3C validator |