MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem2 Structured version   Visualization version   GIF version

Theorem sylow1lem2 19505
Description: Lemma for sylow1 19509. The function is a group action on 𝑆. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
Assertion
Ref Expression
sylow1lem2 (𝜑 ∈ (𝐺 GrpAct 𝑆))
Distinct variable groups:   𝑥,𝑠,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑁,𝑠,𝑥,𝑦,𝑧   𝑋,𝑠,𝑥,𝑦,𝑧   + ,𝑠,𝑥,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝐺,𝑠,𝑥,𝑦,𝑧   𝑃,𝑠,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑠)   (𝑠)   𝑆(𝑠)

Proof of Theorem sylow1lem2
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1.g . . 3 (𝜑𝐺 ∈ Grp)
2 sylow1lem.s . . . 4 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
3 sylow1.x . . . . . 6 𝑋 = (Base‘𝐺)
43fvexi 6854 . . . . 5 𝑋 ∈ V
54pwex 5330 . . . 4 𝒫 𝑋 ∈ V
62, 5rabex2 5291 . . 3 𝑆 ∈ V
71, 6jctir 520 . 2 (𝜑 → (𝐺 ∈ Grp ∧ 𝑆 ∈ V))
8 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑥𝑋)
9 sylow1lem.a . . . . . . . . . . . . 13 + = (+g𝐺)
10 eqid 2729 . . . . . . . . . . . . 13 (𝑧𝑋 ↦ (𝑥 + 𝑧)) = (𝑧𝑋 ↦ (𝑥 + 𝑧))
113, 9, 10grplmulf1o 18921 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1-onto𝑋)
121, 8, 11syl2an2r 685 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1-onto𝑋)
13 f1of1 6781 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1-onto𝑋 → (𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1𝑋)
1412, 13syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1𝑋)
15 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑦𝑆)
16 fveqeq2 6849 . . . . . . . . . . . . . 14 (𝑠 = 𝑦 → ((♯‘𝑠) = (𝑃𝑁) ↔ (♯‘𝑦) = (𝑃𝑁)))
1716, 2elrab2 3659 . . . . . . . . . . . . 13 (𝑦𝑆 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (♯‘𝑦) = (𝑃𝑁)))
1815, 17sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (𝑦 ∈ 𝒫 𝑋 ∧ (♯‘𝑦) = (𝑃𝑁)))
1918simpld 494 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑦 ∈ 𝒫 𝑋)
2019elpwid 4568 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑦𝑋)
21 f1ssres 6745 . . . . . . . . . 10 (((𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1𝑋𝑦𝑋) → ((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦1-1𝑋)
2214, 20, 21syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦1-1𝑋)
23 resmpt 5997 . . . . . . . . . 10 (𝑦𝑋 → ((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦) = (𝑧𝑦 ↦ (𝑥 + 𝑧)))
24 f1eq1 6733 . . . . . . . . . 10 (((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦) = (𝑧𝑦 ↦ (𝑥 + 𝑧)) → (((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦1-1𝑋 ↔ (𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1𝑋))
2520, 23, 243syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦1-1𝑋 ↔ (𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1𝑋))
2622, 25mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1𝑋)
27 f1f 6738 . . . . . . . 8 ((𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1𝑋 → (𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦𝑋)
28 frn 6677 . . . . . . . 8 ((𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦𝑋 → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋)
2926, 27, 283syl 18 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋)
304elpw2 5284 . . . . . . 7 (ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝒫 𝑋 ↔ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋)
3129, 30sylibr 234 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝒫 𝑋)
32 f1f1orn 6793 . . . . . . . . 9 ((𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1𝑋 → (𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1-onto→ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
33 vex 3448 . . . . . . . . . 10 𝑦 ∈ V
3433f1oen 8921 . . . . . . . . 9 ((𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1-onto→ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) → 𝑦 ≈ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
3526, 32, 343syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑦 ≈ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
36 sylow1.f . . . . . . . . . 10 (𝜑𝑋 ∈ Fin)
37 ssfi 9114 . . . . . . . . . 10 ((𝑋 ∈ Fin ∧ 𝑦𝑋) → 𝑦 ∈ Fin)
3836, 20, 37syl2an2r 685 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑦 ∈ Fin)
39 ssfi 9114 . . . . . . . . . 10 ((𝑋 ∈ Fin ∧ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ Fin)
4036, 29, 39syl2an2r 685 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ Fin)
41 hashen 14288 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ Fin) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ (𝑥 + 𝑧))))
4238, 40, 41syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ (𝑥 + 𝑧))))
4335, 42mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))))
4418simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (♯‘𝑦) = (𝑃𝑁))
4543, 44eqtr3d 2766 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))) = (𝑃𝑁))
46 fveqeq2 6849 . . . . . . 7 (𝑠 = ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) → ((♯‘𝑠) = (𝑃𝑁) ↔ (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))) = (𝑃𝑁)))
4746, 2elrab2 3659 . . . . . 6 (ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆 ↔ (ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝒫 𝑋 ∧ (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))) = (𝑃𝑁)))
4831, 45, 47sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆)
4948ralrimivva 3178 . . . 4 (𝜑 → ∀𝑥𝑋𝑦𝑆 ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆)
50 sylow1lem.m . . . . 5 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
5150fmpo 8026 . . . 4 (∀𝑥𝑋𝑦𝑆 ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆 :(𝑋 × 𝑆)⟶𝑆)
5249, 51sylib 218 . . 3 (𝜑 :(𝑋 × 𝑆)⟶𝑆)
531adantr 480 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝐺 ∈ Grp)
54 eqid 2729 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
553, 54grpidcl 18873 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
5653, 55syl 17 . . . . . . 7 ((𝜑𝑎𝑆) → (0g𝐺) ∈ 𝑋)
57 simpr 484 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎𝑆)
58 simpr 484 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
59 simpl 482 . . . . . . . . . . 11 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑥 = (0g𝐺))
6059oveq1d 7384 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((0g𝐺) + 𝑧))
6158, 60mpteq12dv 5189 . . . . . . . . 9 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)))
6261rneqd 5891 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)))
63 vex 3448 . . . . . . . . . 10 𝑎 ∈ V
6463mptex 7179 . . . . . . . . 9 (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) ∈ V
6564rnex 7866 . . . . . . . 8 ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) ∈ V
6662, 50, 65ovmpoa 7524 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑎𝑆) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)))
6756, 57, 66syl2anc 584 . . . . . 6 ((𝜑𝑎𝑆) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)))
682ssrab3 4041 . . . . . . . . . . . . . 14 𝑆 ⊆ 𝒫 𝑋
6968, 57sselid 3941 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝑎 ∈ 𝒫 𝑋)
7069elpwid 4568 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎𝑋)
7170sselda 3943 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑧𝑎) → 𝑧𝑋)
723, 9, 54grplid 18875 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
7353, 71, 72syl2an2r 685 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝑎) → ((0g𝐺) + 𝑧) = 𝑧)
7473mpteq2dva 5195 . . . . . . . . 9 ((𝜑𝑎𝑆) → (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) = (𝑧𝑎𝑧))
75 mptresid 6011 . . . . . . . . 9 ( I ↾ 𝑎) = (𝑧𝑎𝑧)
7674, 75eqtr4di 2782 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) = ( I ↾ 𝑎))
7776rneqd 5891 . . . . . . 7 ((𝜑𝑎𝑆) → ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) = ran ( I ↾ 𝑎))
78 rnresi 6035 . . . . . . 7 ran ( I ↾ 𝑎) = 𝑎
7977, 78eqtrdi 2780 . . . . . 6 ((𝜑𝑎𝑆) → ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) = 𝑎)
8067, 79eqtrd 2764 . . . . 5 ((𝜑𝑎𝑆) → ((0g𝐺) 𝑎) = 𝑎)
81 ovex 7402 . . . . . . . . . 10 (𝑐 + 𝑧) ∈ V
82 oveq2 7377 . . . . . . . . . 10 (𝑤 = (𝑐 + 𝑧) → (𝑏 + 𝑤) = (𝑏 + (𝑐 + 𝑧)))
8381, 82abrexco 7200 . . . . . . . . 9 {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = (𝑐 + 𝑧)}𝑢 = (𝑏 + 𝑤)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (𝑏 + (𝑐 + 𝑧))}
84 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → 𝑐𝑋)
8557adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → 𝑎𝑆)
86 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑦 = 𝑎)
87 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑥 = 𝑐)
8887oveq1d 7384 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑥 + 𝑧) = (𝑐 + 𝑧))
8986, 88mpteq12dv 5189 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧𝑎 ↦ (𝑐 + 𝑧)))
9089rneqd 5891 . . . . . . . . . . . . . 14 ((𝑥 = 𝑐𝑦 = 𝑎) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧𝑎 ↦ (𝑐 + 𝑧)))
9163mptex 7179 . . . . . . . . . . . . . . 15 (𝑧𝑎 ↦ (𝑐 + 𝑧)) ∈ V
9291rnex 7866 . . . . . . . . . . . . . 14 ran (𝑧𝑎 ↦ (𝑐 + 𝑧)) ∈ V
9390, 50, 92ovmpoa 7524 . . . . . . . . . . . . 13 ((𝑐𝑋𝑎𝑆) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ (𝑐 + 𝑧)))
9484, 85, 93syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ (𝑐 + 𝑧)))
95 eqid 2729 . . . . . . . . . . . . 13 (𝑧𝑎 ↦ (𝑐 + 𝑧)) = (𝑧𝑎 ↦ (𝑐 + 𝑧))
9695rnmpt 5910 . . . . . . . . . . . 12 ran (𝑧𝑎 ↦ (𝑐 + 𝑧)) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = (𝑐 + 𝑧)}
9794, 96eqtrdi 2780 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = (𝑐 + 𝑧)})
9897rexeqdv 3297 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑤 ∈ (𝑐 𝑎)𝑢 = (𝑏 + 𝑤) ↔ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = (𝑐 + 𝑧)}𝑢 = (𝑏 + 𝑤)))
9998abbidv 2795 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = (𝑏 + 𝑤)} = {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = (𝑐 + 𝑧)}𝑢 = (𝑏 + 𝑤)})
10053ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝐺 ∈ Grp)
101 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → 𝑏𝑋)
102101adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑏𝑋)
10384adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑐𝑋)
10471adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑧𝑋)
1053, 9grpass 18850 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑏𝑋𝑐𝑋𝑧𝑋)) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
106100, 102, 103, 104, 105syl13anc 1374 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
107106eqeq2d 2740 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑢 = ((𝑏 + 𝑐) + 𝑧) ↔ 𝑢 = (𝑏 + (𝑐 + 𝑧))))
108107rexbidva 3155 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑧𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧) ↔ ∃𝑧𝑎 𝑢 = (𝑏 + (𝑐 + 𝑧))))
109108abbidv 2795 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (𝑏 + (𝑐 + 𝑧))})
11083, 99, 1093eqtr4a 2790 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = (𝑏 + 𝑤)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧)})
111 eqid 2729 . . . . . . . . 9 (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)) = (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤))
112111rnmpt 5910 . . . . . . . 8 ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)) = {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = (𝑏 + 𝑤)}
113 eqid 2729 . . . . . . . . 9 (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) = (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧))
114113rnmpt 5910 . . . . . . . 8 ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧)}
115110, 112, 1143eqtr4g 2789 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)) = ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)))
11652ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → :(𝑋 × 𝑆)⟶𝑆)
117116, 84, 85fovcdmd 7541 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) ∈ 𝑆)
118 simpr 484 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑦 = (𝑐 𝑎))
119 simpl 482 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑥 = 𝑏)
120119oveq1d 7384 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑥 + 𝑧) = (𝑏 + 𝑧))
121118, 120mpteq12dv 5189 . . . . . . . . . . 11 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑧)))
122 oveq2 7377 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝑏 + 𝑧) = (𝑏 + 𝑤))
123122cbvmptv 5206 . . . . . . . . . . 11 (𝑧 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑧)) = (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤))
124121, 123eqtrdi 2780 . . . . . . . . . 10 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)))
125124rneqd 5891 . . . . . . . . 9 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)))
126 ovex 7402 . . . . . . . . . . 11 (𝑐 𝑎) ∈ V
127126mptex 7179 . . . . . . . . . 10 (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)) ∈ V
128127rnex 7866 . . . . . . . . 9 ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)) ∈ V
129125, 50, 128ovmpoa 7524 . . . . . . . 8 ((𝑏𝑋 ∧ (𝑐 𝑎) ∈ 𝑆) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)))
130101, 117, 129syl2anc 584 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)))
1311ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → 𝐺 ∈ Grp)
1323, 9grpcl 18849 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑐𝑋) → (𝑏 + 𝑐) ∈ 𝑋)
133131, 101, 84, 132syl3anc 1373 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 + 𝑐) ∈ 𝑋)
134 simpr 484 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
135 simpl 482 . . . . . . . . . . . 12 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑥 = (𝑏 + 𝑐))
136135oveq1d 7384 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((𝑏 + 𝑐) + 𝑧))
137134, 136mpteq12dv 5189 . . . . . . . . . 10 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)))
138137rneqd 5891 . . . . . . . . 9 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)))
13963mptex 7179 . . . . . . . . . 10 (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) ∈ V
140139rnex 7866 . . . . . . . . 9 ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) ∈ V
141138, 50, 140ovmpoa 7524 . . . . . . . 8 (((𝑏 + 𝑐) ∈ 𝑋𝑎𝑆) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)))
142133, 85, 141syl2anc 584 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)))
143115, 130, 1423eqtr4rd 2775 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
144143ralrimivva 3178 . . . . 5 ((𝜑𝑎𝑆) → ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
14580, 144jca 511 . . . 4 ((𝜑𝑎𝑆) → (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
146145ralrimiva 3125 . . 3 (𝜑 → ∀𝑎𝑆 (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
14752, 146jca 511 . 2 (𝜑 → ( :(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑎𝑆 (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))))
1483, 9, 54isga 19199 . 2 ( ∈ (𝐺 GrpAct 𝑆) ↔ ((𝐺 ∈ Grp ∧ 𝑆 ∈ V) ∧ ( :(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑎𝑆 (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))))
1497, 147, 148sylanbrc 583 1 (𝜑 ∈ (𝐺 GrpAct 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183   I cid 5525   × cxp 5629  ran crn 5632  cres 5633  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cmpo 7371  cen 8892  Fincfn 8895  0cn0 12418  cexp 14002  chash 14271  cdvds 16198  cprime 16617  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18841   GrpAct cga 19197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-hash 14272  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-ga 19198
This theorem is referenced by:  sylow1lem3  19506  sylow1lem5  19508
  Copyright terms: Public domain W3C validator