MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem2 Structured version   Visualization version   GIF version

Theorem sylow1lem2 19536
Description: Lemma for sylow1 19540. The function is a group action on 𝑆. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Base‘𝐺)
sylow1.g (𝜑𝐺 ∈ Grp)
sylow1.f (𝜑𝑋 ∈ Fin)
sylow1.p (𝜑𝑃 ∈ ℙ)
sylow1.n (𝜑𝑁 ∈ ℕ0)
sylow1.d (𝜑 → (𝑃𝑁) ∥ (♯‘𝑋))
sylow1lem.a + = (+g𝐺)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
sylow1lem.m = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
Assertion
Ref Expression
sylow1lem2 (𝜑 ∈ (𝐺 GrpAct 𝑆))
Distinct variable groups:   𝑥,𝑠,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑁,𝑠,𝑥,𝑦,𝑧   𝑋,𝑠,𝑥,𝑦,𝑧   + ,𝑠,𝑥,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝐺,𝑠,𝑥,𝑦,𝑧   𝑃,𝑠,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑠)   (𝑠)   𝑆(𝑠)

Proof of Theorem sylow1lem2
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1.g . . 3 (𝜑𝐺 ∈ Grp)
2 sylow1lem.s . . . 4 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃𝑁)}
3 sylow1.x . . . . . 6 𝑋 = (Base‘𝐺)
43fvexi 6875 . . . . 5 𝑋 ∈ V
54pwex 5338 . . . 4 𝒫 𝑋 ∈ V
62, 5rabex2 5299 . . 3 𝑆 ∈ V
71, 6jctir 520 . 2 (𝜑 → (𝐺 ∈ Grp ∧ 𝑆 ∈ V))
8 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑥𝑋)
9 sylow1lem.a . . . . . . . . . . . . 13 + = (+g𝐺)
10 eqid 2730 . . . . . . . . . . . . 13 (𝑧𝑋 ↦ (𝑥 + 𝑧)) = (𝑧𝑋 ↦ (𝑥 + 𝑧))
113, 9, 10grplmulf1o 18952 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1-onto𝑋)
121, 8, 11syl2an2r 685 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1-onto𝑋)
13 f1of1 6802 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1-onto𝑋 → (𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1𝑋)
1412, 13syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1𝑋)
15 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑦𝑆)
16 fveqeq2 6870 . . . . . . . . . . . . . 14 (𝑠 = 𝑦 → ((♯‘𝑠) = (𝑃𝑁) ↔ (♯‘𝑦) = (𝑃𝑁)))
1716, 2elrab2 3665 . . . . . . . . . . . . 13 (𝑦𝑆 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (♯‘𝑦) = (𝑃𝑁)))
1815, 17sylib 218 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (𝑦 ∈ 𝒫 𝑋 ∧ (♯‘𝑦) = (𝑃𝑁)))
1918simpld 494 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑦 ∈ 𝒫 𝑋)
2019elpwid 4575 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑦𝑋)
21 f1ssres 6766 . . . . . . . . . 10 (((𝑧𝑋 ↦ (𝑥 + 𝑧)):𝑋1-1𝑋𝑦𝑋) → ((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦1-1𝑋)
2214, 20, 21syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦1-1𝑋)
23 resmpt 6011 . . . . . . . . . 10 (𝑦𝑋 → ((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦) = (𝑧𝑦 ↦ (𝑥 + 𝑧)))
24 f1eq1 6754 . . . . . . . . . 10 (((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦) = (𝑧𝑦 ↦ (𝑥 + 𝑧)) → (((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦1-1𝑋 ↔ (𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1𝑋))
2520, 23, 243syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (((𝑧𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦1-1𝑋 ↔ (𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1𝑋))
2622, 25mpbid 232 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1𝑋)
27 f1f 6759 . . . . . . . 8 ((𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1𝑋 → (𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦𝑋)
28 frn 6698 . . . . . . . 8 ((𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦𝑋 → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋)
2926, 27, 283syl 18 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋)
304elpw2 5292 . . . . . . 7 (ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝒫 𝑋 ↔ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋)
3129, 30sylibr 234 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝒫 𝑋)
32 f1f1orn 6814 . . . . . . . . 9 ((𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1𝑋 → (𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1-onto→ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
33 vex 3454 . . . . . . . . . 10 𝑦 ∈ V
3433f1oen 8947 . . . . . . . . 9 ((𝑧𝑦 ↦ (𝑥 + 𝑧)):𝑦1-1-onto→ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) → 𝑦 ≈ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
3526, 32, 343syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑦 ≈ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
36 sylow1.f . . . . . . . . . 10 (𝜑𝑋 ∈ Fin)
37 ssfi 9143 . . . . . . . . . 10 ((𝑋 ∈ Fin ∧ 𝑦𝑋) → 𝑦 ∈ Fin)
3836, 20, 37syl2an2r 685 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → 𝑦 ∈ Fin)
39 ssfi 9143 . . . . . . . . . 10 ((𝑋 ∈ Fin ∧ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ Fin)
4036, 29, 39syl2an2r 685 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ Fin)
41 hashen 14319 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ Fin) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ (𝑥 + 𝑧))))
4238, 40, 41syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ((♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))) ↔ 𝑦 ≈ ran (𝑧𝑦 ↦ (𝑥 + 𝑧))))
4335, 42mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (♯‘𝑦) = (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))))
4418simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (♯‘𝑦) = (𝑃𝑁))
4543, 44eqtr3d 2767 . . . . . 6 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))) = (𝑃𝑁))
46 fveqeq2 6870 . . . . . . 7 (𝑠 = ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) → ((♯‘𝑠) = (𝑃𝑁) ↔ (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))) = (𝑃𝑁)))
4746, 2elrab2 3665 . . . . . 6 (ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆 ↔ (ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝒫 𝑋 ∧ (♯‘ran (𝑧𝑦 ↦ (𝑥 + 𝑧))) = (𝑃𝑁)))
4831, 45, 47sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑆)) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆)
4948ralrimivva 3181 . . . 4 (𝜑 → ∀𝑥𝑋𝑦𝑆 ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆)
50 sylow1lem.m . . . . 5 = (𝑥𝑋, 𝑦𝑆 ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
5150fmpo 8050 . . . 4 (∀𝑥𝑋𝑦𝑆 ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆 :(𝑋 × 𝑆)⟶𝑆)
5249, 51sylib 218 . . 3 (𝜑 :(𝑋 × 𝑆)⟶𝑆)
531adantr 480 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝐺 ∈ Grp)
54 eqid 2730 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
553, 54grpidcl 18904 . . . . . . . 8 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
5653, 55syl 17 . . . . . . 7 ((𝜑𝑎𝑆) → (0g𝐺) ∈ 𝑋)
57 simpr 484 . . . . . . 7 ((𝜑𝑎𝑆) → 𝑎𝑆)
58 simpr 484 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
59 simpl 482 . . . . . . . . . . 11 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → 𝑥 = (0g𝐺))
6059oveq1d 7405 . . . . . . . . . 10 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((0g𝐺) + 𝑧))
6158, 60mpteq12dv 5197 . . . . . . . . 9 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)))
6261rneqd 5905 . . . . . . . 8 ((𝑥 = (0g𝐺) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)))
63 vex 3454 . . . . . . . . . 10 𝑎 ∈ V
6463mptex 7200 . . . . . . . . 9 (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) ∈ V
6564rnex 7889 . . . . . . . 8 ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) ∈ V
6662, 50, 65ovmpoa 7547 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑎𝑆) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)))
6756, 57, 66syl2anc 584 . . . . . 6 ((𝜑𝑎𝑆) → ((0g𝐺) 𝑎) = ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)))
682ssrab3 4048 . . . . . . . . . . . . . 14 𝑆 ⊆ 𝒫 𝑋
6968, 57sselid 3947 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝑎 ∈ 𝒫 𝑋)
7069elpwid 4575 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎𝑋)
7170sselda 3949 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ 𝑧𝑎) → 𝑧𝑋)
723, 9, 54grplid 18906 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺) + 𝑧) = 𝑧)
7353, 71, 72syl2an2r 685 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ 𝑧𝑎) → ((0g𝐺) + 𝑧) = 𝑧)
7473mpteq2dva 5203 . . . . . . . . 9 ((𝜑𝑎𝑆) → (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) = (𝑧𝑎𝑧))
75 mptresid 6025 . . . . . . . . 9 ( I ↾ 𝑎) = (𝑧𝑎𝑧)
7674, 75eqtr4di 2783 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) = ( I ↾ 𝑎))
7776rneqd 5905 . . . . . . 7 ((𝜑𝑎𝑆) → ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) = ran ( I ↾ 𝑎))
78 rnresi 6049 . . . . . . 7 ran ( I ↾ 𝑎) = 𝑎
7977, 78eqtrdi 2781 . . . . . 6 ((𝜑𝑎𝑆) → ran (𝑧𝑎 ↦ ((0g𝐺) + 𝑧)) = 𝑎)
8067, 79eqtrd 2765 . . . . 5 ((𝜑𝑎𝑆) → ((0g𝐺) 𝑎) = 𝑎)
81 ovex 7423 . . . . . . . . . 10 (𝑐 + 𝑧) ∈ V
82 oveq2 7398 . . . . . . . . . 10 (𝑤 = (𝑐 + 𝑧) → (𝑏 + 𝑤) = (𝑏 + (𝑐 + 𝑧)))
8381, 82abrexco 7221 . . . . . . . . 9 {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = (𝑐 + 𝑧)}𝑢 = (𝑏 + 𝑤)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (𝑏 + (𝑐 + 𝑧))}
84 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → 𝑐𝑋)
8557adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → 𝑎𝑆)
86 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑦 = 𝑎)
87 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑎) → 𝑥 = 𝑐)
8887oveq1d 7405 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑥 + 𝑧) = (𝑐 + 𝑧))
8986, 88mpteq12dv 5197 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑐𝑦 = 𝑎) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧𝑎 ↦ (𝑐 + 𝑧)))
9089rneqd 5905 . . . . . . . . . . . . . 14 ((𝑥 = 𝑐𝑦 = 𝑎) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧𝑎 ↦ (𝑐 + 𝑧)))
9163mptex 7200 . . . . . . . . . . . . . . 15 (𝑧𝑎 ↦ (𝑐 + 𝑧)) ∈ V
9291rnex 7889 . . . . . . . . . . . . . 14 ran (𝑧𝑎 ↦ (𝑐 + 𝑧)) ∈ V
9390, 50, 92ovmpoa 7547 . . . . . . . . . . . . 13 ((𝑐𝑋𝑎𝑆) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ (𝑐 + 𝑧)))
9484, 85, 93syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = ran (𝑧𝑎 ↦ (𝑐 + 𝑧)))
95 eqid 2730 . . . . . . . . . . . . 13 (𝑧𝑎 ↦ (𝑐 + 𝑧)) = (𝑧𝑎 ↦ (𝑐 + 𝑧))
9695rnmpt 5924 . . . . . . . . . . . 12 ran (𝑧𝑎 ↦ (𝑐 + 𝑧)) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = (𝑐 + 𝑧)}
9794, 96eqtrdi 2781 . . . . . . . . . . 11 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) = {𝑣 ∣ ∃𝑧𝑎 𝑣 = (𝑐 + 𝑧)})
9897rexeqdv 3302 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑤 ∈ (𝑐 𝑎)𝑢 = (𝑏 + 𝑤) ↔ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = (𝑐 + 𝑧)}𝑢 = (𝑏 + 𝑤)))
9998abbidv 2796 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = (𝑏 + 𝑤)} = {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧𝑎 𝑣 = (𝑐 + 𝑧)}𝑢 = (𝑏 + 𝑤)})
10053ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝐺 ∈ Grp)
101 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → 𝑏𝑋)
102101adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑏𝑋)
10384adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑐𝑋)
10471adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → 𝑧𝑋)
1053, 9grpass 18881 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑏𝑋𝑐𝑋𝑧𝑋)) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
106100, 102, 103, 104, 105syl13anc 1374 . . . . . . . . . . . 12 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧)))
107106eqeq2d 2741 . . . . . . . . . . 11 ((((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) ∧ 𝑧𝑎) → (𝑢 = ((𝑏 + 𝑐) + 𝑧) ↔ 𝑢 = (𝑏 + (𝑐 + 𝑧))))
108107rexbidva 3156 . . . . . . . . . 10 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (∃𝑧𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧) ↔ ∃𝑧𝑎 𝑢 = (𝑏 + (𝑐 + 𝑧))))
109108abbidv 2796 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = (𝑏 + (𝑐 + 𝑧))})
11083, 99, 1093eqtr4a 2791 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = (𝑏 + 𝑤)} = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧)})
111 eqid 2730 . . . . . . . . 9 (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)) = (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤))
112111rnmpt 5924 . . . . . . . 8 ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)) = {𝑢 ∣ ∃𝑤 ∈ (𝑐 𝑎)𝑢 = (𝑏 + 𝑤)}
113 eqid 2730 . . . . . . . . 9 (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) = (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧))
114113rnmpt 5924 . . . . . . . 8 ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) = {𝑢 ∣ ∃𝑧𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧)}
115110, 112, 1143eqtr4g 2790 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)) = ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)))
11652ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → :(𝑋 × 𝑆)⟶𝑆)
117116, 84, 85fovcdmd 7564 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (𝑐 𝑎) ∈ 𝑆)
118 simpr 484 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑦 = (𝑐 𝑎))
119 simpl 482 . . . . . . . . . . . . 13 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → 𝑥 = 𝑏)
120119oveq1d 7405 . . . . . . . . . . . 12 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑥 + 𝑧) = (𝑏 + 𝑧))
121118, 120mpteq12dv 5197 . . . . . . . . . . 11 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑧)))
122 oveq2 7398 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝑏 + 𝑧) = (𝑏 + 𝑤))
123122cbvmptv 5214 . . . . . . . . . . 11 (𝑧 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑧)) = (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤))
124121, 123eqtrdi 2781 . . . . . . . . . 10 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)))
125124rneqd 5905 . . . . . . . . 9 ((𝑥 = 𝑏𝑦 = (𝑐 𝑎)) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)))
126 ovex 7423 . . . . . . . . . . 11 (𝑐 𝑎) ∈ V
127126mptex 7200 . . . . . . . . . 10 (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)) ∈ V
128127rnex 7889 . . . . . . . . 9 ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)) ∈ V
129125, 50, 128ovmpoa 7547 . . . . . . . 8 ((𝑏𝑋 ∧ (𝑐 𝑎) ∈ 𝑆) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)))
130101, 117, 129syl2anc 584 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 (𝑐 𝑎)) = ran (𝑤 ∈ (𝑐 𝑎) ↦ (𝑏 + 𝑤)))
1311ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → 𝐺 ∈ Grp)
1323, 9grpcl 18880 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑏𝑋𝑐𝑋) → (𝑏 + 𝑐) ∈ 𝑋)
133131, 101, 84, 132syl3anc 1373 . . . . . . . 8 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → (𝑏 + 𝑐) ∈ 𝑋)
134 simpr 484 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎)
135 simpl 482 . . . . . . . . . . . 12 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑥 = (𝑏 + 𝑐))
136135oveq1d 7405 . . . . . . . . . . 11 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((𝑏 + 𝑐) + 𝑧))
137134, 136mpteq12dv 5197 . . . . . . . . . 10 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)))
138137rneqd 5905 . . . . . . . . 9 ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)))
13963mptex 7200 . . . . . . . . . 10 (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) ∈ V
140139rnex 7889 . . . . . . . . 9 ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) ∈ V
141138, 50, 140ovmpoa 7547 . . . . . . . 8 (((𝑏 + 𝑐) ∈ 𝑋𝑎𝑆) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)))
142133, 85, 141syl2anc 584 . . . . . . 7 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = ran (𝑧𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)))
143115, 130, 1423eqtr4rd 2776 . . . . . 6 (((𝜑𝑎𝑆) ∧ (𝑏𝑋𝑐𝑋)) → ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
144143ralrimivva 3181 . . . . 5 ((𝜑𝑎𝑆) → ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))
14580, 144jca 511 . . . 4 ((𝜑𝑎𝑆) → (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
146145ralrimiva 3126 . . 3 (𝜑 → ∀𝑎𝑆 (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))
14752, 146jca 511 . 2 (𝜑 → ( :(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑎𝑆 (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎)))))
1483, 9, 54isga 19230 . 2 ( ∈ (𝐺 GrpAct 𝑆) ↔ ((𝐺 ∈ Grp ∧ 𝑆 ∈ V) ∧ ( :(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑎𝑆 (((0g𝐺) 𝑎) = 𝑎 ∧ ∀𝑏𝑋𝑐𝑋 ((𝑏 + 𝑐) 𝑎) = (𝑏 (𝑐 𝑎))))))
1497, 147, 148sylanbrc 583 1 (𝜑 ∈ (𝐺 GrpAct 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191   I cid 5535   × cxp 5639  ran crn 5642  cres 5643  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392  cen 8918  Fincfn 8921  0cn0 12449  cexp 14033  chash 14302  cdvds 16229  cprime 16648  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Grpcgrp 18872   GrpAct cga 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-hash 14303  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-ga 19229
This theorem is referenced by:  sylow1lem3  19537  sylow1lem5  19539
  Copyright terms: Public domain W3C validator