Step | Hyp | Ref
| Expression |
1 | | sylow1.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
2 | | sylow1lem.s |
. . . 4
⊢ 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (♯‘𝑠) = (𝑃↑𝑁)} |
3 | | sylow1.x |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
4 | 3 | fvexi 6731 |
. . . . 5
⊢ 𝑋 ∈ V |
5 | 4 | pwex 5273 |
. . . 4
⊢ 𝒫
𝑋 ∈ V |
6 | 2, 5 | rabex2 5227 |
. . 3
⊢ 𝑆 ∈ V |
7 | 1, 6 | jctir 524 |
. 2
⊢ (𝜑 → (𝐺 ∈ Grp ∧ 𝑆 ∈ V)) |
8 | | simprl 771 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑋) |
9 | | sylow1lem.a |
. . . . . . . . . . . . 13
⊢ + =
(+g‘𝐺) |
10 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)) |
11 | 3, 9, 10 | grplmulf1o 18437 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)):𝑋–1-1-onto→𝑋) |
12 | 1, 8, 11 | syl2an2r 685 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → (𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)):𝑋–1-1-onto→𝑋) |
13 | | f1of1 6660 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)):𝑋–1-1-onto→𝑋 → (𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)):𝑋–1-1→𝑋) |
14 | 12, 13 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → (𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)):𝑋–1-1→𝑋) |
15 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
16 | | fveqeq2 6726 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑦 → ((♯‘𝑠) = (𝑃↑𝑁) ↔ (♯‘𝑦) = (𝑃↑𝑁))) |
17 | 16, 2 | elrab2 3605 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (♯‘𝑦) = (𝑃↑𝑁))) |
18 | 15, 17 | sylib 221 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → (𝑦 ∈ 𝒫 𝑋 ∧ (♯‘𝑦) = (𝑃↑𝑁))) |
19 | 18 | simpld 498 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝒫 𝑋) |
20 | 19 | elpwid 4524 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ⊆ 𝑋) |
21 | | f1ssres 6623 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)):𝑋–1-1→𝑋 ∧ 𝑦 ⊆ 𝑋) → ((𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦–1-1→𝑋) |
22 | 14, 20, 21 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → ((𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦–1-1→𝑋) |
23 | | resmpt 5905 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝑋 → ((𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦) = (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
24 | | f1eq1 6610 |
. . . . . . . . . 10
⊢ (((𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦) = (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) → (((𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦–1-1→𝑋 ↔ (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)):𝑦–1-1→𝑋)) |
25 | 20, 23, 24 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → (((𝑧 ∈ 𝑋 ↦ (𝑥 + 𝑧)) ↾ 𝑦):𝑦–1-1→𝑋 ↔ (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)):𝑦–1-1→𝑋)) |
26 | 22, 25 | mpbid 235 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)):𝑦–1-1→𝑋) |
27 | | f1f 6615 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)):𝑦–1-1→𝑋 → (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)):𝑦⟶𝑋) |
28 | | frn 6552 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)):𝑦⟶𝑋 → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋) |
29 | 26, 27, 28 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋) |
30 | 4 | elpw2 5238 |
. . . . . . 7
⊢ (ran
(𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝒫 𝑋 ↔ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋) |
31 | 29, 30 | sylibr 237 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝒫 𝑋) |
32 | | f1f1orn 6672 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)):𝑦–1-1→𝑋 → (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)):𝑦–1-1-onto→ran
(𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
33 | | vex 3412 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
34 | 33 | f1oen 8649 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)):𝑦–1-1-onto→ran
(𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) → 𝑦 ≈ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
35 | 26, 32, 34 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ≈ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
36 | | sylow1.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ Fin) |
37 | | ssfi 8851 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ Fin ∧ 𝑦 ⊆ 𝑋) → 𝑦 ∈ Fin) |
38 | 36, 20, 37 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ Fin) |
39 | | ssfi 8851 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ Fin ∧ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ⊆ 𝑋) → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ∈ Fin) |
40 | 36, 29, 39 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ∈ Fin) |
41 | | hashen 13913 |
. . . . . . . . 9
⊢ ((𝑦 ∈ Fin ∧ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ∈ Fin) → ((♯‘𝑦) = (♯‘ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) ↔ 𝑦 ≈ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)))) |
42 | 38, 40, 41 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → ((♯‘𝑦) = (♯‘ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) ↔ 𝑦 ≈ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)))) |
43 | 35, 42 | mpbird 260 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → (♯‘𝑦) = (♯‘ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)))) |
44 | 18 | simprd 499 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → (♯‘𝑦) = (𝑃↑𝑁)) |
45 | 43, 44 | eqtr3d 2779 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → (♯‘ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) = (𝑃↑𝑁)) |
46 | | fveqeq2 6726 |
. . . . . . 7
⊢ (𝑠 = ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) → ((♯‘𝑠) = (𝑃↑𝑁) ↔ (♯‘ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) = (𝑃↑𝑁))) |
47 | 46, 2 | elrab2 3605 |
. . . . . 6
⊢ (ran
(𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆 ↔ (ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝒫 𝑋 ∧ (♯‘ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) = (𝑃↑𝑁))) |
48 | 31, 45, 47 | sylanbrc 586 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑆)) → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆) |
49 | 48 | ralrimivva 3112 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆) |
50 | | sylow1lem.m |
. . . . 5
⊢ ⊕ =
(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑆 ↦ ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧))) |
51 | 50 | fmpo 7838 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑆 ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) ∈ 𝑆 ↔ ⊕ :(𝑋 × 𝑆)⟶𝑆) |
52 | 49, 51 | sylib 221 |
. . 3
⊢ (𝜑 → ⊕ :(𝑋 × 𝑆)⟶𝑆) |
53 | 1 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝐺 ∈ Grp) |
54 | | eqid 2737 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
55 | 3, 54 | grpidcl 18395 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
56 | 53, 55 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (0g‘𝐺) ∈ 𝑋) |
57 | | simpr 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝑆) |
58 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎) |
59 | | simpl 486 |
. . . . . . . . . . 11
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → 𝑥 = (0g‘𝐺)) |
60 | 59 | oveq1d 7228 |
. . . . . . . . . 10
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((0g‘𝐺) + 𝑧)) |
61 | 58, 60 | mpteq12dv 5140 |
. . . . . . . . 9
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ 𝑎 ↦ ((0g‘𝐺) + 𝑧))) |
62 | 61 | rneqd 5807 |
. . . . . . . 8
⊢ ((𝑥 = (0g‘𝐺) ∧ 𝑦 = 𝑎) → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ 𝑎 ↦ ((0g‘𝐺) + 𝑧))) |
63 | | vex 3412 |
. . . . . . . . . 10
⊢ 𝑎 ∈ V |
64 | 63 | mptex 7039 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑎 ↦ ((0g‘𝐺) + 𝑧)) ∈ V |
65 | 64 | rnex 7690 |
. . . . . . . 8
⊢ ran
(𝑧 ∈ 𝑎 ↦
((0g‘𝐺)
+ 𝑧)) ∈ V |
66 | 62, 50, 65 | ovmpoa 7364 |
. . . . . . 7
⊢
(((0g‘𝐺) ∈ 𝑋 ∧ 𝑎 ∈ 𝑆) → ((0g‘𝐺) ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ ((0g‘𝐺) + 𝑧))) |
67 | 56, 57, 66 | syl2anc 587 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((0g‘𝐺) ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ ((0g‘𝐺) + 𝑧))) |
68 | 2 | ssrab3 3995 |
. . . . . . . . . . . . . 14
⊢ 𝑆 ⊆ 𝒫 𝑋 |
69 | 68, 57 | sseldi 3899 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝒫 𝑋) |
70 | 69 | elpwid 4524 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ⊆ 𝑋) |
71 | 70 | sselda 3901 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝑎) → 𝑧 ∈ 𝑋) |
72 | 3, 9, 54 | grplid 18397 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋) → ((0g‘𝐺) + 𝑧) = 𝑧) |
73 | 53, 71, 72 | syl2an2r 685 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ 𝑧 ∈ 𝑎) → ((0g‘𝐺) + 𝑧) = 𝑧) |
74 | 73 | mpteq2dva 5150 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑧 ∈ 𝑎 ↦ ((0g‘𝐺) + 𝑧)) = (𝑧 ∈ 𝑎 ↦ 𝑧)) |
75 | | mptresid 5918 |
. . . . . . . . 9
⊢ ( I
↾ 𝑎) = (𝑧 ∈ 𝑎 ↦ 𝑧) |
76 | 74, 75 | eqtr4di 2796 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑧 ∈ 𝑎 ↦ ((0g‘𝐺) + 𝑧)) = ( I ↾ 𝑎)) |
77 | 76 | rneqd 5807 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ran (𝑧 ∈ 𝑎 ↦ ((0g‘𝐺) + 𝑧)) = ran ( I ↾ 𝑎)) |
78 | | rnresi 5943 |
. . . . . . 7
⊢ ran ( I
↾ 𝑎) = 𝑎 |
79 | 77, 78 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ran (𝑧 ∈ 𝑎 ↦ ((0g‘𝐺) + 𝑧)) = 𝑎) |
80 | 67, 79 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((0g‘𝐺) ⊕ 𝑎) = 𝑎) |
81 | | ovex 7246 |
. . . . . . . . . 10
⊢ (𝑐 + 𝑧) ∈ V |
82 | | oveq2 7221 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑐 + 𝑧) → (𝑏 + 𝑤) = (𝑏 + (𝑐 + 𝑧))) |
83 | 81, 82 | abrexco 7057 |
. . . . . . . . 9
⊢ {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧 ∈ 𝑎 𝑣 = (𝑐 + 𝑧)}𝑢 = (𝑏 + 𝑤)} = {𝑢 ∣ ∃𝑧 ∈ 𝑎 𝑢 = (𝑏 + (𝑐 + 𝑧))} |
84 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑐 ∈ 𝑋) |
85 | 57 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑎 ∈ 𝑆) |
86 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎) |
87 | | simpl 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → 𝑥 = 𝑐) |
88 | 87 | oveq1d 7228 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = (𝑐 + 𝑧)) |
89 | 86, 88 | mpteq12dv 5140 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ 𝑎 ↦ (𝑐 + 𝑧))) |
90 | 89 | rneqd 5807 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑐 ∧ 𝑦 = 𝑎) → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ 𝑎 ↦ (𝑐 + 𝑧))) |
91 | 63 | mptex 7039 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑎 ↦ (𝑐 + 𝑧)) ∈ V |
92 | 91 | rnex 7690 |
. . . . . . . . . . . . . 14
⊢ ran
(𝑧 ∈ 𝑎 ↦ (𝑐 + 𝑧)) ∈ V |
93 | 90, 50, 92 | ovmpoa 7364 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ∈ 𝑋 ∧ 𝑎 ∈ 𝑆) → (𝑐 ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ (𝑐 + 𝑧))) |
94 | 84, 85, 93 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐 ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ (𝑐 + 𝑧))) |
95 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑎 ↦ (𝑐 + 𝑧)) = (𝑧 ∈ 𝑎 ↦ (𝑐 + 𝑧)) |
96 | 95 | rnmpt 5824 |
. . . . . . . . . . . 12
⊢ ran
(𝑧 ∈ 𝑎 ↦ (𝑐 + 𝑧)) = {𝑣 ∣ ∃𝑧 ∈ 𝑎 𝑣 = (𝑐 + 𝑧)} |
97 | 94, 96 | eqtrdi 2794 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐 ⊕ 𝑎) = {𝑣 ∣ ∃𝑧 ∈ 𝑎 𝑣 = (𝑐 + 𝑧)}) |
98 | 97 | rexeqdv 3326 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (∃𝑤 ∈ (𝑐 ⊕ 𝑎)𝑢 = (𝑏 + 𝑤) ↔ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧 ∈ 𝑎 𝑣 = (𝑐 + 𝑧)}𝑢 = (𝑏 + 𝑤))) |
99 | 98 | abbidv 2807 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 ⊕ 𝑎)𝑢 = (𝑏 + 𝑤)} = {𝑢 ∣ ∃𝑤 ∈ {𝑣 ∣ ∃𝑧 ∈ 𝑎 𝑣 = (𝑐 + 𝑧)}𝑢 = (𝑏 + 𝑤)}) |
100 | 53 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → 𝐺 ∈ Grp) |
101 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝑏 ∈ 𝑋) |
102 | 101 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → 𝑏 ∈ 𝑋) |
103 | 84 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → 𝑐 ∈ 𝑋) |
104 | 71 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → 𝑧 ∈ 𝑋) |
105 | 3, 9 | grpass 18374 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧))) |
106 | 100, 102,
103, 104, 105 | syl13anc 1374 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → ((𝑏 + 𝑐) + 𝑧) = (𝑏 + (𝑐 + 𝑧))) |
107 | 106 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) ∧ 𝑧 ∈ 𝑎) → (𝑢 = ((𝑏 + 𝑐) + 𝑧) ↔ 𝑢 = (𝑏 + (𝑐 + 𝑧)))) |
108 | 107 | rexbidva 3215 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (∃𝑧 ∈ 𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧) ↔ ∃𝑧 ∈ 𝑎 𝑢 = (𝑏 + (𝑐 + 𝑧)))) |
109 | 108 | abbidv 2807 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → {𝑢 ∣ ∃𝑧 ∈ 𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧)} = {𝑢 ∣ ∃𝑧 ∈ 𝑎 𝑢 = (𝑏 + (𝑐 + 𝑧))}) |
110 | 83, 99, 109 | 3eqtr4a 2804 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → {𝑢 ∣ ∃𝑤 ∈ (𝑐 ⊕ 𝑎)𝑢 = (𝑏 + 𝑤)} = {𝑢 ∣ ∃𝑧 ∈ 𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧)}) |
111 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤)) = (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤)) |
112 | 111 | rnmpt 5824 |
. . . . . . . 8
⊢ ran
(𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤)) = {𝑢 ∣ ∃𝑤 ∈ (𝑐 ⊕ 𝑎)𝑢 = (𝑏 + 𝑤)} |
113 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) = (𝑧 ∈ 𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) |
114 | 113 | rnmpt 5824 |
. . . . . . . 8
⊢ ran
(𝑧 ∈ 𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) = {𝑢 ∣ ∃𝑧 ∈ 𝑎 𝑢 = ((𝑏 + 𝑐) + 𝑧)} |
115 | 110, 112,
114 | 3eqtr4g 2803 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ran (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤)) = ran (𝑧 ∈ 𝑎 ↦ ((𝑏 + 𝑐) + 𝑧))) |
116 | 52 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ⊕ :(𝑋 × 𝑆)⟶𝑆) |
117 | 116, 84, 85 | fovrnd 7380 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑐 ⊕ 𝑎) ∈ 𝑆) |
118 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → 𝑦 = (𝑐 ⊕ 𝑎)) |
119 | | simpl 486 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → 𝑥 = 𝑏) |
120 | 119 | oveq1d 7228 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → (𝑥 + 𝑧) = (𝑏 + 𝑧)) |
121 | 118, 120 | mpteq12dv 5140 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑧))) |
122 | | oveq2 7221 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → (𝑏 + 𝑧) = (𝑏 + 𝑤)) |
123 | 122 | cbvmptv 5158 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑧)) = (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤)) |
124 | 121, 123 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤))) |
125 | 124 | rneqd 5807 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑏 ∧ 𝑦 = (𝑐 ⊕ 𝑎)) → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤))) |
126 | | ovex 7246 |
. . . . . . . . . . 11
⊢ (𝑐 ⊕ 𝑎) ∈ V |
127 | 126 | mptex 7039 |
. . . . . . . . . 10
⊢ (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤)) ∈ V |
128 | 127 | rnex 7690 |
. . . . . . . . 9
⊢ ran
(𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤)) ∈ V |
129 | 125, 50, 128 | ovmpoa 7364 |
. . . . . . . 8
⊢ ((𝑏 ∈ 𝑋 ∧ (𝑐 ⊕ 𝑎) ∈ 𝑆) → (𝑏 ⊕ (𝑐 ⊕ 𝑎)) = ran (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤))) |
130 | 101, 117,
129 | syl2anc 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑏 ⊕ (𝑐 ⊕ 𝑎)) = ran (𝑤 ∈ (𝑐 ⊕ 𝑎) ↦ (𝑏 + 𝑤))) |
131 | 1 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → 𝐺 ∈ Grp) |
132 | 3, 9 | grpcl 18373 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋) → (𝑏 + 𝑐) ∈ 𝑋) |
133 | 131, 101,
84, 132 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → (𝑏 + 𝑐) ∈ 𝑋) |
134 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑦 = 𝑎) |
135 | | simpl 486 |
. . . . . . . . . . . 12
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → 𝑥 = (𝑏 + 𝑐)) |
136 | 135 | oveq1d 7228 |
. . . . . . . . . . 11
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑥 + 𝑧) = ((𝑏 + 𝑐) + 𝑧)) |
137 | 134, 136 | mpteq12dv 5140 |
. . . . . . . . . 10
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ 𝑎 ↦ ((𝑏 + 𝑐) + 𝑧))) |
138 | 137 | rneqd 5807 |
. . . . . . . . 9
⊢ ((𝑥 = (𝑏 + 𝑐) ∧ 𝑦 = 𝑎) → ran (𝑧 ∈ 𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ 𝑎 ↦ ((𝑏 + 𝑐) + 𝑧))) |
139 | 63 | mptex 7039 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) ∈ V |
140 | 139 | rnex 7690 |
. . . . . . . . 9
⊢ ran
(𝑧 ∈ 𝑎 ↦ ((𝑏 + 𝑐) + 𝑧)) ∈ V |
141 | 138, 50, 140 | ovmpoa 7364 |
. . . . . . . 8
⊢ (((𝑏 + 𝑐) ∈ 𝑋 ∧ 𝑎 ∈ 𝑆) → ((𝑏 + 𝑐) ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ ((𝑏 + 𝑐) + 𝑧))) |
142 | 133, 85, 141 | syl2anc 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑏 + 𝑐) ⊕ 𝑎) = ran (𝑧 ∈ 𝑎 ↦ ((𝑏 + 𝑐) + 𝑧))) |
143 | 115, 130,
142 | 3eqtr4rd 2788 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝑆) ∧ (𝑏 ∈ 𝑋 ∧ 𝑐 ∈ 𝑋)) → ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎))) |
144 | 143 | ralrimivva 3112 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎))) |
145 | 80, 144 | jca 515 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((0g‘𝐺) ⊕ 𝑎) = 𝑎 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎)))) |
146 | 145 | ralrimiva 3105 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝑆 (((0g‘𝐺) ⊕ 𝑎) = 𝑎 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎)))) |
147 | 52, 146 | jca 515 |
. 2
⊢ (𝜑 → ( ⊕ :(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑎 ∈ 𝑆 (((0g‘𝐺) ⊕ 𝑎) = 𝑎 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎))))) |
148 | 3, 9, 54 | isga 18685 |
. 2
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑆) ↔ ((𝐺 ∈ Grp ∧ 𝑆 ∈ V) ∧ ( ⊕ :(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑎 ∈ 𝑆 (((0g‘𝐺) ⊕ 𝑎) = 𝑎 ∧ ∀𝑏 ∈ 𝑋 ∀𝑐 ∈ 𝑋 ((𝑏 + 𝑐) ⊕ 𝑎) = (𝑏 ⊕ (𝑐 ⊕ 𝑎)))))) |
149 | 7, 147, 148 | sylanbrc 586 |
1
⊢ (𝜑 → ⊕ ∈ (𝐺 GrpAct 𝑆)) |