MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjsubgen Structured version   Visualization version   GIF version

Theorem conjsubgen 18336
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
Assertion
Ref Expression
conjsubgen ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ≈ ran 𝐹)
Distinct variable groups:   𝑥,   𝑥, +   𝑥,𝐴   𝑥,𝐺   𝑥,𝑆   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem conjsubgen
StepHypRef Expression
1 subgrcl 18229 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 conjghm.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 conjghm.p . . . . . . . 8 + = (+g𝐺)
4 conjghm.m . . . . . . . 8 = (-g𝐺)
5 eqid 2826 . . . . . . . 8 (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))
62, 3, 4, 5conjghm 18334 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
71, 6sylan 580 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
8 f1of1 6613 . . . . . 6 ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋 → (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋)
97, 8simpl2im 504 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋)
102subgss 18225 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1110adantr 481 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆𝑋)
12 f1ssres 6581 . . . . 5 (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋𝑆𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋)
139, 11, 12syl2anc 584 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋)
1411resmptd 5907 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴)))
15 conjsubg.f . . . . . 6 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
1614, 15syl6eqr 2879 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = 𝐹)
17 f1eq1 6569 . . . . 5 (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = 𝐹 → (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋𝐹:𝑆1-1𝑋))
1816, 17syl 17 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋𝐹:𝑆1-1𝑋))
1913, 18mpbid 233 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝐹:𝑆1-1𝑋)
20 f1f1orn 6625 . . 3 (𝐹:𝑆1-1𝑋𝐹:𝑆1-1-onto→ran 𝐹)
2119, 20syl 17 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝐹:𝑆1-1-onto→ran 𝐹)
22 f1oeng 8522 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐹:𝑆1-1-onto→ran 𝐹) → 𝑆 ≈ ran 𝐹)
2321, 22syldan 591 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ≈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wss 3940   class class class wbr 5063  cmpt 5143  ran crn 5555  cres 5556  1-1wf1 6351  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7150  cen 8500  Basecbs 16478  +gcplusg 16560  Grpcgrp 18048  -gcsg 18050  SubGrpcsubg 18218   GrpHom cghm 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-en 8504  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18051  df-minusg 18052  df-sbg 18053  df-subg 18221  df-ghm 18301
This theorem is referenced by:  slwhash  18685  sylow2  18687  sylow3lem1  18688
  Copyright terms: Public domain W3C validator