| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conjsubgen | Structured version Visualization version GIF version | ||
| Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| conjghm.x | ⊢ 𝑋 = (Base‘𝐺) |
| conjghm.p | ⊢ + = (+g‘𝐺) |
| conjghm.m | ⊢ − = (-g‘𝐺) |
| conjsubg.f | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
| Ref | Expression |
|---|---|
| conjsubgen | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrcl 19044 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 2 | conjghm.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | conjghm.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
| 4 | conjghm.m | . . . . . . . 8 ⊢ − = (-g‘𝐺) | |
| 5 | eqid 2731 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
| 6 | 2, 3, 4, 5 | conjghm 19162 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋)) |
| 7 | 1, 6 | sylan 580 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋)) |
| 8 | f1of1 6762 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋 → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋) | |
| 9 | 7, 8 | simpl2im 503 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋) |
| 10 | 2 | subgss 19040 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
| 12 | f1ssres 6726 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋 ∧ 𝑆 ⊆ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋) | |
| 13 | 9, 11, 12 | syl2anc 584 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋) |
| 14 | 11 | resmptd 5989 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴))) |
| 15 | conjsubg.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
| 16 | 14, 15 | eqtr4di 2784 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = 𝐹) |
| 17 | f1eq1 6714 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = 𝐹 → (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋 ↔ 𝐹:𝑆–1-1→𝑋)) | |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋 ↔ 𝐹:𝑆–1-1→𝑋)) |
| 19 | 13, 18 | mpbid 232 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑆–1-1→𝑋) |
| 20 | f1f1orn 6774 | . . 3 ⊢ (𝐹:𝑆–1-1→𝑋 → 𝐹:𝑆–1-1-onto→ran 𝐹) | |
| 21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑆–1-1-onto→ran 𝐹) |
| 22 | f1oeng 8893 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐹:𝑆–1-1-onto→ran 𝐹) → 𝑆 ≈ ran 𝐹) | |
| 23 | 21, 22 | syldan 591 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 ran crn 5617 ↾ cres 5618 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ≈ cen 8866 Basecbs 17120 +gcplusg 17161 Grpcgrp 18846 -gcsg 18848 SubGrpcsubg 19033 GrpHom cghm 19125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-en 8870 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-ghm 19126 |
| This theorem is referenced by: slwhash 19537 sylow2 19539 sylow3lem1 19540 |
| Copyright terms: Public domain | W3C validator |