MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjsubgen Structured version   Visualization version   GIF version

Theorem conjsubgen 19119
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Baseβ€˜πΊ)
conjghm.p + = (+gβ€˜πΊ)
conjghm.m βˆ’ = (-gβ€˜πΊ)
conjsubg.f 𝐹 = (π‘₯ ∈ 𝑆 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴))
Assertion
Ref Expression
conjsubgen ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ 𝑆 β‰ˆ ran 𝐹)
Distinct variable groups:   π‘₯, βˆ’   π‘₯, +   π‘₯,𝐴   π‘₯,𝐺   π‘₯,𝑆   π‘₯,𝑋
Allowed substitution hint:   𝐹(π‘₯)

Proof of Theorem conjsubgen
StepHypRef Expression
1 subgrcl 19005 . . . . . . 7 (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 𝐺 ∈ Grp)
2 conjghm.x . . . . . . . 8 𝑋 = (Baseβ€˜πΊ)
3 conjghm.p . . . . . . . 8 + = (+gβ€˜πΊ)
4 conjghm.m . . . . . . . 8 βˆ’ = (-gβ€˜πΊ)
5 eqid 2732 . . . . . . . 8 (π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)) = (π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴))
62, 3, 4, 5conjghm 19117 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)):𝑋–1-1-onto→𝑋))
71, 6sylan 580 . . . . . 6 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)):𝑋–1-1-onto→𝑋))
8 f1of1 6829 . . . . . 6 ((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)):𝑋–1-1-onto→𝑋 β†’ (π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)):𝑋–1-1→𝑋)
97, 8simpl2im 504 . . . . 5 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ (π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)):𝑋–1-1→𝑋)
102subgss 19001 . . . . . 6 (𝑆 ∈ (SubGrpβ€˜πΊ) β†’ 𝑆 βŠ† 𝑋)
1110adantr 481 . . . . 5 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ 𝑆 βŠ† 𝑋)
12 f1ssres 6792 . . . . 5 (((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)):𝑋–1-1→𝑋 ∧ 𝑆 βŠ† 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)) β†Ύ 𝑆):𝑆–1-1→𝑋)
139, 11, 12syl2anc 584 . . . 4 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)) β†Ύ 𝑆):𝑆–1-1→𝑋)
1411resmptd 6038 . . . . . 6 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)) β†Ύ 𝑆) = (π‘₯ ∈ 𝑆 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)))
15 conjsubg.f . . . . . 6 𝐹 = (π‘₯ ∈ 𝑆 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴))
1614, 15eqtr4di 2790 . . . . 5 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)) β†Ύ 𝑆) = 𝐹)
17 f1eq1 6779 . . . . 5 (((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)) β†Ύ 𝑆) = 𝐹 β†’ (((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)) β†Ύ 𝑆):𝑆–1-1→𝑋 ↔ 𝐹:𝑆–1-1→𝑋))
1816, 17syl 17 . . . 4 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ (((π‘₯ ∈ 𝑋 ↦ ((𝐴 + π‘₯) βˆ’ 𝐴)) β†Ύ 𝑆):𝑆–1-1→𝑋 ↔ 𝐹:𝑆–1-1→𝑋))
1913, 18mpbid 231 . . 3 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ 𝐹:𝑆–1-1→𝑋)
20 f1f1orn 6841 . . 3 (𝐹:𝑆–1-1→𝑋 β†’ 𝐹:𝑆–1-1-ontoβ†’ran 𝐹)
2119, 20syl 17 . 2 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ 𝐹:𝑆–1-1-ontoβ†’ran 𝐹)
22 f1oeng 8963 . 2 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐹:𝑆–1-1-ontoβ†’ran 𝐹) β†’ 𝑆 β‰ˆ ran 𝐹)
2321, 22syldan 591 1 ((𝑆 ∈ (SubGrpβ€˜πΊ) ∧ 𝐴 ∈ 𝑋) β†’ 𝑆 β‰ˆ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βŠ† wss 3947   class class class wbr 5147   ↦ cmpt 5230  ran crn 5676   β†Ύ cres 5677  β€“1-1β†’wf1 6537  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405   β‰ˆ cen 8932  Basecbs 17140  +gcplusg 17193  Grpcgrp 18815  -gcsg 18817  SubGrpcsubg 18994   GrpHom cghm 19083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-en 8936  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-ghm 19084
This theorem is referenced by:  slwhash  19486  sylow2  19488  sylow3lem1  19489
  Copyright terms: Public domain W3C validator