![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > conjsubgen | Structured version Visualization version GIF version |
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
conjghm.x | ⊢ 𝑋 = (Base‘𝐺) |
conjghm.p | ⊢ + = (+g‘𝐺) |
conjghm.m | ⊢ − = (-g‘𝐺) |
conjsubg.f | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
Ref | Expression |
---|---|
conjsubgen | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 17912 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | conjghm.x | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝐺) | |
3 | conjghm.p | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
4 | conjghm.m | . . . . . . . . 9 ⊢ − = (-g‘𝐺) | |
5 | eqid 2799 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
6 | 2, 3, 4, 5 | conjghm 18004 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋)) |
7 | 1, 6 | sylan 576 | . . . . . . 7 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋)) |
8 | 7 | simprd 490 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋) |
9 | f1of1 6355 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋 → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋) |
11 | 2 | subgss 17908 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
12 | 11 | adantr 473 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
13 | f1ssres 6323 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋 ∧ 𝑆 ⊆ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋) | |
14 | 10, 12, 13 | syl2anc 580 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋) |
15 | 12 | resmptd 5664 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴))) |
16 | conjsubg.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
17 | 15, 16 | syl6eqr 2851 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = 𝐹) |
18 | f1eq1 6311 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = 𝐹 → (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋 ↔ 𝐹:𝑆–1-1→𝑋)) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋 ↔ 𝐹:𝑆–1-1→𝑋)) |
20 | 14, 19 | mpbid 224 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑆–1-1→𝑋) |
21 | f1f1orn 6367 | . . 3 ⊢ (𝐹:𝑆–1-1→𝑋 → 𝐹:𝑆–1-1-onto→ran 𝐹) | |
22 | 20, 21 | syl 17 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑆–1-1-onto→ran 𝐹) |
23 | f1oeng 8214 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐹:𝑆–1-1-onto→ran 𝐹) → 𝑆 ≈ ran 𝐹) | |
24 | 22, 23 | syldan 586 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ⊆ wss 3769 class class class wbr 4843 ↦ cmpt 4922 ran crn 5313 ↾ cres 5314 –1-1→wf1 6098 –1-1-onto→wf1o 6100 ‘cfv 6101 (class class class)co 6878 ≈ cen 8192 Basecbs 16184 +gcplusg 16267 Grpcgrp 17738 -gcsg 17740 SubGrpcsubg 17901 GrpHom cghm 17970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-en 8196 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 df-minusg 17742 df-sbg 17743 df-subg 17904 df-ghm 17971 |
This theorem is referenced by: slwhash 18352 sylow2 18354 sylow3lem1 18355 |
Copyright terms: Public domain | W3C validator |