MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjsubgen Structured version   Visualization version   GIF version

Theorem conjsubgen 19164
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
Assertion
Ref Expression
conjsubgen ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ≈ ran 𝐹)
Distinct variable groups:   𝑥,   𝑥, +   𝑥,𝐴   𝑥,𝐺   𝑥,𝑆   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem conjsubgen
StepHypRef Expression
1 subgrcl 19044 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 conjghm.x . . . . . . . 8 𝑋 = (Base‘𝐺)
3 conjghm.p . . . . . . . 8 + = (+g𝐺)
4 conjghm.m . . . . . . . 8 = (-g𝐺)
5 eqid 2731 . . . . . . . 8 (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))
62, 3, 4, 5conjghm 19162 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
71, 6sylan 580 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
8 f1of1 6762 . . . . . 6 ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋 → (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋)
97, 8simpl2im 503 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋)
102subgss 19040 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1110adantr 480 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆𝑋)
12 f1ssres 6726 . . . . 5 (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1𝑋𝑆𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋)
139, 11, 12syl2anc 584 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋)
1411resmptd 5989 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴)))
15 conjsubg.f . . . . . 6 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
1614, 15eqtr4di 2784 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = 𝐹)
17 f1eq1 6714 . . . . 5 (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = 𝐹 → (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋𝐹:𝑆1-1𝑋))
1816, 17syl 17 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆):𝑆1-1𝑋𝐹:𝑆1-1𝑋))
1913, 18mpbid 232 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝐹:𝑆1-1𝑋)
20 f1f1orn 6774 . . 3 (𝐹:𝑆1-1𝑋𝐹:𝑆1-1-onto→ran 𝐹)
2119, 20syl 17 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝐹:𝑆1-1-onto→ran 𝐹)
22 f1oeng 8893 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐹:𝑆1-1-onto→ran 𝐹) → 𝑆 ≈ ran 𝐹)
2321, 22syldan 591 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ≈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3902   class class class wbr 5091  cmpt 5172  ran crn 5617  cres 5618  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cen 8866  Basecbs 17120  +gcplusg 17161  Grpcgrp 18846  -gcsg 18848  SubGrpcsubg 19033   GrpHom cghm 19125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-en 8870  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19126
This theorem is referenced by:  slwhash  19537  sylow2  19539  sylow3lem1  19540
  Copyright terms: Public domain W3C validator