Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > conjsubgen | Structured version Visualization version GIF version |
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
conjghm.x | ⊢ 𝑋 = (Base‘𝐺) |
conjghm.p | ⊢ + = (+g‘𝐺) |
conjghm.m | ⊢ − = (-g‘𝐺) |
conjsubg.f | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
Ref | Expression |
---|---|
conjsubgen | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 18356 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | conjghm.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
3 | conjghm.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
4 | conjghm.m | . . . . . . . 8 ⊢ − = (-g‘𝐺) | |
5 | eqid 2758 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
6 | 2, 3, 4, 5 | conjghm 18461 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋)) |
7 | 1, 6 | sylan 583 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋)) |
8 | f1of1 6605 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋 → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋) | |
9 | 7, 8 | simpl2im 507 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋) |
10 | 2 | subgss 18352 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
11 | 10 | adantr 484 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
12 | f1ssres 6572 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋 ∧ 𝑆 ⊆ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋) | |
13 | 9, 11, 12 | syl2anc 587 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋) |
14 | 11 | resmptd 5884 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴))) |
15 | conjsubg.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
16 | 14, 15 | eqtr4di 2811 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = 𝐹) |
17 | f1eq1 6559 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = 𝐹 → (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋 ↔ 𝐹:𝑆–1-1→𝑋)) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋 ↔ 𝐹:𝑆–1-1→𝑋)) |
19 | 13, 18 | mpbid 235 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑆–1-1→𝑋) |
20 | f1f1orn 6617 | . . 3 ⊢ (𝐹:𝑆–1-1→𝑋 → 𝐹:𝑆–1-1-onto→ran 𝐹) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑆–1-1-onto→ran 𝐹) |
22 | f1oeng 8551 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐹:𝑆–1-1-onto→ran 𝐹) → 𝑆 ≈ ran 𝐹) | |
23 | 21, 22 | syldan 594 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 class class class wbr 5035 ↦ cmpt 5115 ran crn 5528 ↾ cres 5529 –1-1→wf1 6336 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7155 ≈ cen 8529 Basecbs 16546 +gcplusg 16628 Grpcgrp 18174 -gcsg 18176 SubGrpcsubg 18345 GrpHom cghm 18427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-en 8533 df-0g 16778 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-grp 18177 df-minusg 18178 df-sbg 18179 df-subg 18348 df-ghm 18428 |
This theorem is referenced by: slwhash 18821 sylow2 18823 sylow3lem1 18824 |
Copyright terms: Public domain | W3C validator |