![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > conjsubgen | Structured version Visualization version GIF version |
Description: A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
conjghm.x | ⊢ 𝑋 = (Base‘𝐺) |
conjghm.p | ⊢ + = (+g‘𝐺) |
conjghm.m | ⊢ − = (-g‘𝐺) |
conjsubg.f | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
Ref | Expression |
---|---|
conjsubgen | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 19006 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | conjghm.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐺) | |
3 | conjghm.p | . . . . . . . 8 ⊢ + = (+g‘𝐺) | |
4 | conjghm.m | . . . . . . . 8 ⊢ − = (-g‘𝐺) | |
5 | eqid 2733 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
6 | 2, 3, 4, 5 | conjghm 19118 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋)) |
7 | 1, 6 | sylan 581 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋)) |
8 | f1of1 6830 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋 → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋) | |
9 | 7, 8 | simpl2im 505 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋) |
10 | 2 | subgss 19002 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
11 | 10 | adantr 482 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
12 | f1ssres 6793 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1→𝑋 ∧ 𝑆 ⊆ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋) | |
13 | 9, 11, 12 | syl2anc 585 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋) |
14 | 11 | resmptd 6039 | . . . . . 6 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴))) |
15 | conjsubg.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
16 | 14, 15 | eqtr4di 2791 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = 𝐹) |
17 | f1eq1 6780 | . . . . 5 ⊢ (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = 𝐹 → (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋 ↔ 𝐹:𝑆–1-1→𝑋)) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆):𝑆–1-1→𝑋 ↔ 𝐹:𝑆–1-1→𝑋)) |
19 | 13, 18 | mpbid 231 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑆–1-1→𝑋) |
20 | f1f1orn 6842 | . . 3 ⊢ (𝐹:𝑆–1-1→𝑋 → 𝐹:𝑆–1-1-onto→ran 𝐹) | |
21 | 19, 20 | syl 17 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑆–1-1-onto→ran 𝐹) |
22 | f1oeng 8964 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐹:𝑆–1-1-onto→ran 𝐹) → 𝑆 ≈ ran 𝐹) | |
23 | 21, 22 | syldan 592 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⊆ wss 3948 class class class wbr 5148 ↦ cmpt 5231 ran crn 5677 ↾ cres 5678 –1-1→wf1 6538 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7406 ≈ cen 8933 Basecbs 17141 +gcplusg 17194 Grpcgrp 18816 -gcsg 18818 SubGrpcsubg 18995 GrpHom cghm 19084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-1st 7972 df-2nd 7973 df-en 8937 df-0g 17384 df-mgm 18558 df-sgrp 18607 df-mnd 18623 df-grp 18819 df-minusg 18820 df-sbg 18821 df-subg 18998 df-ghm 19085 |
This theorem is referenced by: slwhash 19487 sylow2 19489 sylow3lem1 19490 |
Copyright terms: Public domain | W3C validator |