Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcomptss Structured version   Visualization version   GIF version

Theorem fcomptss 45112
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fcomptss.a (𝜑𝐹:𝐴𝐵)
fcomptss.b (𝜑𝐵𝐶)
fcomptss.g (𝜑𝐺:𝐶𝐷)
Assertion
Ref Expression
fcomptss (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fcomptss
StepHypRef Expression
1 fcomptss.g . 2 (𝜑𝐺:𝐶𝐷)
2 fcomptss.a . . 3 (𝜑𝐹:𝐴𝐵)
3 fcomptss.b . . 3 (𝜑𝐵𝐶)
42, 3fssd 6766 . 2 (𝜑𝐹:𝐴𝐶)
5 fcompt 7169 . 2 ((𝐺:𝐶𝐷𝐹:𝐴𝐶) → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
61, 4, 5syl2anc 583 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wss 3976  cmpt 5249  ccom 5704  wf 6571  cfv 6575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-fv 6583
This theorem is referenced by:  ovolval2lem  46566  ovolval5lem2  46576
  Copyright terms: Public domain W3C validator