Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcomptss Structured version   Visualization version   GIF version

Theorem fcomptss 43902
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fcomptss.a (𝜑𝐹:𝐴𝐵)
fcomptss.b (𝜑𝐵𝐶)
fcomptss.g (𝜑𝐺:𝐶𝐷)
Assertion
Ref Expression
fcomptss (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fcomptss
StepHypRef Expression
1 fcomptss.g . 2 (𝜑𝐺:𝐶𝐷)
2 fcomptss.a . . 3 (𝜑𝐹:𝐴𝐵)
3 fcomptss.b . . 3 (𝜑𝐵𝐶)
42, 3fssd 6736 . 2 (𝜑𝐹:𝐴𝐶)
5 fcompt 7131 . 2 ((𝐺:𝐶𝐷𝐹:𝐴𝐶) → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
61, 4, 5syl2anc 585 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wss 3949  cmpt 5232  ccom 5681  wf 6540  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552
This theorem is referenced by:  ovolval2lem  45359  ovolval5lem2  45369
  Copyright terms: Public domain W3C validator