Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcomptss Structured version   Visualization version   GIF version

Theorem fcomptss 45219
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fcomptss.a (𝜑𝐹:𝐴𝐵)
fcomptss.b (𝜑𝐵𝐶)
fcomptss.g (𝜑𝐺:𝐶𝐷)
Assertion
Ref Expression
fcomptss (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fcomptss
StepHypRef Expression
1 fcomptss.g . 2 (𝜑𝐺:𝐶𝐷)
2 fcomptss.a . . 3 (𝜑𝐹:𝐴𝐵)
3 fcomptss.b . . 3 (𝜑𝐵𝐶)
42, 3fssd 6664 . 2 (𝜑𝐹:𝐴𝐶)
5 fcompt 7061 . 2 ((𝐺:𝐶𝐷𝐹:𝐴𝐶) → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
61, 4, 5syl2anc 584 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3900  cmpt 5170  ccom 5618  wf 6473  cfv 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485
This theorem is referenced by:  ovolval2lem  46660  ovolval5lem2  46670
  Copyright terms: Public domain W3C validator