Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcomptss Structured version   Visualization version   GIF version

Theorem fcomptss 45204
Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fcomptss.a (𝜑𝐹:𝐴𝐵)
fcomptss.b (𝜑𝐵𝐶)
fcomptss.g (𝜑𝐺:𝐶𝐷)
Assertion
Ref Expression
fcomptss (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem fcomptss
StepHypRef Expression
1 fcomptss.g . 2 (𝜑𝐺:𝐶𝐷)
2 fcomptss.a . . 3 (𝜑𝐹:𝐴𝐵)
3 fcomptss.b . . 3 (𝜑𝐵𝐶)
42, 3fssd 6708 . 2 (𝜑𝐹:𝐴𝐶)
5 fcompt 7108 . 2 ((𝐺:𝐶𝐷𝐹:𝐴𝐶) → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
61, 4, 5syl2anc 584 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3917  cmpt 5191  ccom 5645  wf 6510  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522
This theorem is referenced by:  ovolval2lem  46648  ovolval5lem2  46658
  Copyright terms: Public domain W3C validator