Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmapsnd Structured version   Visualization version   GIF version

Theorem elmapsnd 42972
Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
elmapsnd.1 (𝜑𝐹 Fn {𝐴})
elmapsnd.2 (𝜑𝐵𝑉)
elmapsnd.3 (𝜑 → (𝐹𝐴) ∈ 𝐵)
Assertion
Ref Expression
elmapsnd (𝜑𝐹 ∈ (𝐵m {𝐴}))

Proof of Theorem elmapsnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapsnd.1 . . . 4 (𝜑𝐹 Fn {𝐴})
2 elsni 4588 . . . . . . . 8 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
32fveq2d 6815 . . . . . . 7 (𝑥 ∈ {𝐴} → (𝐹𝑥) = (𝐹𝐴))
43adantl 482 . . . . . 6 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝑥) = (𝐹𝐴))
5 elmapsnd.3 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ 𝐵)
65adantr 481 . . . . . 6 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
74, 6eqeltrd 2838 . . . . 5 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝑥) ∈ 𝐵)
87ralrimiva 3140 . . . 4 (𝜑 → ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵)
91, 8jca 512 . . 3 (𝜑 → (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵))
10 ffnfv 7031 . . 3 (𝐹:{𝐴}⟶𝐵 ↔ (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵))
119, 10sylibr 233 . 2 (𝜑𝐹:{𝐴}⟶𝐵)
12 elmapsnd.2 . . 3 (𝜑𝐵𝑉)
13 snex 5369 . . . 4 {𝐴} ∈ V
1413a1i 11 . . 3 (𝜑 → {𝐴} ∈ V)
1512, 14elmapd 8677 . 2 (𝜑 → (𝐹 ∈ (𝐵m {𝐴}) ↔ 𝐹:{𝐴}⟶𝐵))
1611, 15mpbird 256 1 (𝜑𝐹 ∈ (𝐵m {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3062  Vcvv 3441  {csn 4571   Fn wfn 6460  wf 6461  cfv 6465  (class class class)co 7315  m cmap 8663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3727  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-fv 6473  df-ov 7318  df-oprab 7319  df-mpo 7320  df-map 8665
This theorem is referenced by:  ssmapsn  42984
  Copyright terms: Public domain W3C validator