![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmapsnd | Structured version Visualization version GIF version |
Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
elmapsnd.1 | ⊢ (𝜑 → 𝐹 Fn {𝐴}) |
elmapsnd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
elmapsnd.3 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
Ref | Expression |
---|---|
elmapsnd | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapsnd.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn {𝐴}) | |
2 | elsni 4644 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
3 | 2 | fveq2d 6892 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
4 | 3 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝑥) = (𝐹‘𝐴)) |
5 | elmapsnd.3 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) | |
6 | 5 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝐴) ∈ 𝐵) |
7 | 4, 6 | eqeltrd 2833 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝑥) ∈ 𝐵) |
8 | 7 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵) |
9 | 1, 8 | jca 512 | . . 3 ⊢ (𝜑 → (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵)) |
10 | ffnfv 7114 | . . 3 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵)) | |
11 | 9, 10 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
12 | elmapsnd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
13 | snex 5430 | . . . 4 ⊢ {𝐴} ∈ V | |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴} ∈ V) |
15 | 12, 14 | elmapd 8830 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m {𝐴}) ↔ 𝐹:{𝐴}⟶𝐵)) |
16 | 11, 15 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 {csn 4627 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ↑m cmap 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8818 |
This theorem is referenced by: ssmapsn 43900 |
Copyright terms: Public domain | W3C validator |