Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmapsnd Structured version   Visualization version   GIF version

Theorem elmapsnd 45147
Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
elmapsnd.1 (𝜑𝐹 Fn {𝐴})
elmapsnd.2 (𝜑𝐵𝑉)
elmapsnd.3 (𝜑 → (𝐹𝐴) ∈ 𝐵)
Assertion
Ref Expression
elmapsnd (𝜑𝐹 ∈ (𝐵m {𝐴}))

Proof of Theorem elmapsnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapsnd.1 . . . 4 (𝜑𝐹 Fn {𝐴})
2 elsni 4648 . . . . . . . 8 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
32fveq2d 6911 . . . . . . 7 (𝑥 ∈ {𝐴} → (𝐹𝑥) = (𝐹𝐴))
43adantl 481 . . . . . 6 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝑥) = (𝐹𝐴))
5 elmapsnd.3 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ 𝐵)
65adantr 480 . . . . . 6 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
74, 6eqeltrd 2839 . . . . 5 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝑥) ∈ 𝐵)
87ralrimiva 3144 . . . 4 (𝜑 → ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵)
91, 8jca 511 . . 3 (𝜑 → (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵))
10 ffnfv 7139 . . 3 (𝐹:{𝐴}⟶𝐵 ↔ (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵))
119, 10sylibr 234 . 2 (𝜑𝐹:{𝐴}⟶𝐵)
12 elmapsnd.2 . . 3 (𝜑𝐵𝑉)
13 snex 5442 . . . 4 {𝐴} ∈ V
1413a1i 11 . . 3 (𝜑 → {𝐴} ∈ V)
1512, 14elmapd 8879 . 2 (𝜑 → (𝐹 ∈ (𝐵m {𝐴}) ↔ 𝐹:{𝐴}⟶𝐵))
1611, 15mpbird 257 1 (𝜑𝐹 ∈ (𝐵m {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  {csn 4631   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867
This theorem is referenced by:  ssmapsn  45159
  Copyright terms: Public domain W3C validator