| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmapsnd | Structured version Visualization version GIF version | ||
| Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| elmapsnd.1 | ⊢ (𝜑 → 𝐹 Fn {𝐴}) |
| elmapsnd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| elmapsnd.3 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elmapsnd | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapsnd.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn {𝐴}) | |
| 2 | elsni 4623 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 3 | 2 | fveq2d 6885 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 5 | elmapsnd.3 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝐴) ∈ 𝐵) |
| 7 | 4, 6 | eqeltrd 2835 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝑥) ∈ 𝐵) |
| 8 | 7 | ralrimiva 3133 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵) |
| 9 | 1, 8 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵)) |
| 10 | ffnfv 7114 | . . 3 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵)) | |
| 11 | 9, 10 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
| 12 | elmapsnd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 13 | snex 5411 | . . . 4 ⊢ {𝐴} ∈ V | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴} ∈ V) |
| 15 | 12, 14 | elmapd 8859 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m {𝐴}) ↔ 𝐹:{𝐴}⟶𝐵)) |
| 16 | 11, 15 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 {csn 4606 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 |
| This theorem is referenced by: ssmapsn 45220 |
| Copyright terms: Public domain | W3C validator |