![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmapsnd | Structured version Visualization version GIF version |
Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
elmapsnd.1 | ⊢ (𝜑 → 𝐹 Fn {𝐴}) |
elmapsnd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
elmapsnd.3 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
Ref | Expression |
---|---|
elmapsnd | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapsnd.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn {𝐴}) | |
2 | elsni 4648 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
3 | 2 | fveq2d 6911 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝑥) = (𝐹‘𝐴)) |
5 | elmapsnd.3 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝐴) ∈ 𝐵) |
7 | 4, 6 | eqeltrd 2839 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝑥) ∈ 𝐵) |
8 | 7 | ralrimiva 3144 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵) |
9 | 1, 8 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵)) |
10 | ffnfv 7139 | . . 3 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵)) | |
11 | 9, 10 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
12 | elmapsnd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
13 | snex 5442 | . . . 4 ⊢ {𝐴} ∈ V | |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴} ∈ V) |
15 | 12, 14 | elmapd 8879 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m {𝐴}) ↔ 𝐹:{𝐴}⟶𝐵)) |
16 | 11, 15 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 {csn 4631 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 |
This theorem is referenced by: ssmapsn 45159 |
Copyright terms: Public domain | W3C validator |