Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmapsnd Structured version   Visualization version   GIF version

Theorem elmapsnd 45111
Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
elmapsnd.1 (𝜑𝐹 Fn {𝐴})
elmapsnd.2 (𝜑𝐵𝑉)
elmapsnd.3 (𝜑 → (𝐹𝐴) ∈ 𝐵)
Assertion
Ref Expression
elmapsnd (𝜑𝐹 ∈ (𝐵m {𝐴}))

Proof of Theorem elmapsnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapsnd.1 . . . 4 (𝜑𝐹 Fn {𝐴})
2 elsni 4665 . . . . . . . 8 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
32fveq2d 6924 . . . . . . 7 (𝑥 ∈ {𝐴} → (𝐹𝑥) = (𝐹𝐴))
43adantl 481 . . . . . 6 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝑥) = (𝐹𝐴))
5 elmapsnd.3 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ 𝐵)
65adantr 480 . . . . . 6 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝐴) ∈ 𝐵)
74, 6eqeltrd 2844 . . . . 5 ((𝜑𝑥 ∈ {𝐴}) → (𝐹𝑥) ∈ 𝐵)
87ralrimiva 3152 . . . 4 (𝜑 → ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵)
91, 8jca 511 . . 3 (𝜑 → (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵))
10 ffnfv 7153 . . 3 (𝐹:{𝐴}⟶𝐵 ↔ (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹𝑥) ∈ 𝐵))
119, 10sylibr 234 . 2 (𝜑𝐹:{𝐴}⟶𝐵)
12 elmapsnd.2 . . 3 (𝜑𝐵𝑉)
13 snex 5451 . . . 4 {𝐴} ∈ V
1413a1i 11 . . 3 (𝜑 → {𝐴} ∈ V)
1512, 14elmapd 8898 . 2 (𝜑 → (𝐹 ∈ (𝐵m {𝐴}) ↔ 𝐹:{𝐴}⟶𝐵))
1611, 15mpbird 257 1 (𝜑𝐹 ∈ (𝐵m {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  {csn 4648   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886
This theorem is referenced by:  ssmapsn  45123
  Copyright terms: Public domain W3C validator