| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmapsnd | Structured version Visualization version GIF version | ||
| Description: Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| elmapsnd.1 | ⊢ (𝜑 → 𝐹 Fn {𝐴}) |
| elmapsnd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| elmapsnd.3 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elmapsnd | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapsnd.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn {𝐴}) | |
| 2 | elsni 4593 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 3 | 2 | fveq2d 6826 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 5 | elmapsnd.3 | . . . . . . 7 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝐴) ∈ 𝐵) |
| 7 | 4, 6 | eqeltrd 2831 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝐴}) → (𝐹‘𝑥) ∈ 𝐵) |
| 8 | 7 | ralrimiva 3124 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵) |
| 9 | 1, 8 | jca 511 | . . 3 ⊢ (𝜑 → (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵)) |
| 10 | ffnfv 7052 | . . 3 ⊢ (𝐹:{𝐴}⟶𝐵 ↔ (𝐹 Fn {𝐴} ∧ ∀𝑥 ∈ {𝐴} (𝐹‘𝑥) ∈ 𝐵)) | |
| 11 | 9, 10 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) |
| 12 | elmapsnd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 13 | snex 5374 | . . . 4 ⊢ {𝐴} ∈ V | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → {𝐴} ∈ V) |
| 15 | 12, 14 | elmapd 8764 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m {𝐴}) ↔ 𝐹:{𝐴}⟶𝐵)) |
| 16 | 11, 15 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 {csn 4576 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 |
| This theorem is referenced by: ssmapsn 45252 |
| Copyright terms: Public domain | W3C validator |