![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnmetcoval | Structured version Visualization version GIF version |
Description: Value of the distance function of the metric space of complex numbers, composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
cnmetcoval.d | ⊢ 𝐷 = (abs ∘ − ) |
cnmetcoval.f | ⊢ (𝜑 → 𝐹:𝐴⟶(ℂ × ℂ)) |
cnmetcoval.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
cnmetcoval | ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmetcoval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶(ℂ × ℂ)) | |
2 | cnmetcoval.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
3 | 1, 2 | fvovco 40318 | . 2 ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = ((1st ‘(𝐹‘𝐵))𝐷(2nd ‘(𝐹‘𝐵)))) |
4 | 1, 2 | ffvelrnd 6626 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (ℂ × ℂ)) |
5 | xp1st 7479 | . . . 4 ⊢ ((𝐹‘𝐵) ∈ (ℂ × ℂ) → (1st ‘(𝐹‘𝐵)) ∈ ℂ) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘(𝐹‘𝐵)) ∈ ℂ) |
7 | xp2nd 7480 | . . . 4 ⊢ ((𝐹‘𝐵) ∈ (ℂ × ℂ) → (2nd ‘(𝐹‘𝐵)) ∈ ℂ) | |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐹‘𝐵)) ∈ ℂ) |
9 | cnmetcoval.d | . . . 4 ⊢ 𝐷 = (abs ∘ − ) | |
10 | 9 | cnmetdval 22993 | . . 3 ⊢ (((1st ‘(𝐹‘𝐵)) ∈ ℂ ∧ (2nd ‘(𝐹‘𝐵)) ∈ ℂ) → ((1st ‘(𝐹‘𝐵))𝐷(2nd ‘(𝐹‘𝐵))) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
11 | 6, 8, 10 | syl2anc 579 | . 2 ⊢ (𝜑 → ((1st ‘(𝐹‘𝐵))𝐷(2nd ‘(𝐹‘𝐵))) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
12 | 3, 11 | eqtrd 2814 | 1 ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 × cxp 5355 ∘ ccom 5361 ⟶wf 6133 ‘cfv 6137 (class class class)co 6924 1st c1st 7445 2nd c2nd 7446 ℂcc 10272 − cmin 10608 abscabs 14387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-po 5276 df-so 5277 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-1st 7447 df-2nd 7448 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-ltxr 10418 df-sub 10610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |