![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnmetcoval | Structured version Visualization version GIF version |
Description: Value of the distance function of the metric space of complex numbers, composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
cnmetcoval.d | ⊢ 𝐷 = (abs ∘ − ) |
cnmetcoval.f | ⊢ (𝜑 → 𝐹:𝐴⟶(ℂ × ℂ)) |
cnmetcoval.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
cnmetcoval | ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmetcoval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶(ℂ × ℂ)) | |
2 | cnmetcoval.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
3 | 1, 2 | fvovco 45171 | . 2 ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = ((1st ‘(𝐹‘𝐵))𝐷(2nd ‘(𝐹‘𝐵)))) |
4 | 1, 2 | ffvelcdmd 7103 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (ℂ × ℂ)) |
5 | xp1st 8042 | . . . 4 ⊢ ((𝐹‘𝐵) ∈ (ℂ × ℂ) → (1st ‘(𝐹‘𝐵)) ∈ ℂ) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘(𝐹‘𝐵)) ∈ ℂ) |
7 | xp2nd 8043 | . . . 4 ⊢ ((𝐹‘𝐵) ∈ (ℂ × ℂ) → (2nd ‘(𝐹‘𝐵)) ∈ ℂ) | |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐹‘𝐵)) ∈ ℂ) |
9 | cnmetcoval.d | . . . 4 ⊢ 𝐷 = (abs ∘ − ) | |
10 | 9 | cnmetdval 24781 | . . 3 ⊢ (((1st ‘(𝐹‘𝐵)) ∈ ℂ ∧ (2nd ‘(𝐹‘𝐵)) ∈ ℂ) → ((1st ‘(𝐹‘𝐵))𝐷(2nd ‘(𝐹‘𝐵))) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
11 | 6, 8, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → ((1st ‘(𝐹‘𝐵))𝐷(2nd ‘(𝐹‘𝐵))) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
12 | 3, 11 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 × cxp 5681 ∘ ccom 5687 ⟶wf 6555 ‘cfv 6559 (class class class)co 7429 1st c1st 8008 2nd c2nd 8009 ℂcc 11149 − cmin 11488 abscabs 15269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-po 5590 df-so 5591 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-pnf 11293 df-mnf 11294 df-ltxr 11296 df-sub 11490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |