Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnmetcoval Structured version   Visualization version   GIF version

Theorem cnmetcoval 44199
Description: Value of the distance function of the metric space of complex numbers, composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
cnmetcoval.d 𝐷 = (abs ∘ − )
cnmetcoval.f (𝜑𝐹:𝐴⟶(ℂ × ℂ))
cnmetcoval.b (𝜑𝐵𝐴)
Assertion
Ref Expression
cnmetcoval (𝜑 → ((𝐷𝐹)‘𝐵) = (abs‘((1st ‘(𝐹𝐵)) − (2nd ‘(𝐹𝐵)))))

Proof of Theorem cnmetcoval
StepHypRef Expression
1 cnmetcoval.f . . 3 (𝜑𝐹:𝐴⟶(ℂ × ℂ))
2 cnmetcoval.b . . 3 (𝜑𝐵𝐴)
31, 2fvovco 44190 . 2 (𝜑 → ((𝐷𝐹)‘𝐵) = ((1st ‘(𝐹𝐵))𝐷(2nd ‘(𝐹𝐵))))
41, 2ffvelcdmd 7086 . . . 4 (𝜑 → (𝐹𝐵) ∈ (ℂ × ℂ))
5 xp1st 8009 . . . 4 ((𝐹𝐵) ∈ (ℂ × ℂ) → (1st ‘(𝐹𝐵)) ∈ ℂ)
64, 5syl 17 . . 3 (𝜑 → (1st ‘(𝐹𝐵)) ∈ ℂ)
7 xp2nd 8010 . . . 4 ((𝐹𝐵) ∈ (ℂ × ℂ) → (2nd ‘(𝐹𝐵)) ∈ ℂ)
84, 7syl 17 . . 3 (𝜑 → (2nd ‘(𝐹𝐵)) ∈ ℂ)
9 cnmetcoval.d . . . 4 𝐷 = (abs ∘ − )
109cnmetdval 24507 . . 3 (((1st ‘(𝐹𝐵)) ∈ ℂ ∧ (2nd ‘(𝐹𝐵)) ∈ ℂ) → ((1st ‘(𝐹𝐵))𝐷(2nd ‘(𝐹𝐵))) = (abs‘((1st ‘(𝐹𝐵)) − (2nd ‘(𝐹𝐵)))))
116, 8, 10syl2anc 582 . 2 (𝜑 → ((1st ‘(𝐹𝐵))𝐷(2nd ‘(𝐹𝐵))) = (abs‘((1st ‘(𝐹𝐵)) − (2nd ‘(𝐹𝐵)))))
123, 11eqtrd 2770 1 (𝜑 → ((𝐷𝐹)‘𝐵) = (abs‘((1st ‘(𝐹𝐵)) − (2nd ‘(𝐹𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104   × cxp 5673  ccom 5679  wf 6538  cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  cc 11110  cmin 11448  abscabs 15185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-sub 11450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator