| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnmetcoval | Structured version Visualization version GIF version | ||
| Description: Value of the distance function of the metric space of complex numbers, composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| cnmetcoval.d | ⊢ 𝐷 = (abs ∘ − ) |
| cnmetcoval.f | ⊢ (𝜑 → 𝐹:𝐴⟶(ℂ × ℂ)) |
| cnmetcoval.b | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| cnmetcoval | ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmetcoval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶(ℂ × ℂ)) | |
| 2 | cnmetcoval.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 3 | 1, 2 | fvovco 45180 | . 2 ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = ((1st ‘(𝐹‘𝐵))𝐷(2nd ‘(𝐹‘𝐵)))) |
| 4 | 1, 2 | ffvelcdmd 7059 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐵) ∈ (ℂ × ℂ)) |
| 5 | xp1st 8002 | . . . 4 ⊢ ((𝐹‘𝐵) ∈ (ℂ × ℂ) → (1st ‘(𝐹‘𝐵)) ∈ ℂ) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘(𝐹‘𝐵)) ∈ ℂ) |
| 7 | xp2nd 8003 | . . . 4 ⊢ ((𝐹‘𝐵) ∈ (ℂ × ℂ) → (2nd ‘(𝐹‘𝐵)) ∈ ℂ) | |
| 8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐹‘𝐵)) ∈ ℂ) |
| 9 | cnmetcoval.d | . . . 4 ⊢ 𝐷 = (abs ∘ − ) | |
| 10 | 9 | cnmetdval 24664 | . . 3 ⊢ (((1st ‘(𝐹‘𝐵)) ∈ ℂ ∧ (2nd ‘(𝐹‘𝐵)) ∈ ℂ) → ((1st ‘(𝐹‘𝐵))𝐷(2nd ‘(𝐹‘𝐵))) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
| 11 | 6, 8, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → ((1st ‘(𝐹‘𝐵))𝐷(2nd ‘(𝐹‘𝐵))) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
| 12 | 3, 11 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5638 ∘ ccom 5644 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 ℂcc 11072 − cmin 11411 abscabs 15206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 df-sub 11413 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |