Step | Hyp | Ref
| Expression |
1 | | ovolval5lem2.z |
. . . . . 6
⊢ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝐺)) |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝐺))) |
3 | | nnex 11979 |
. . . . . . 7
⊢ ℕ
∈ V |
4 | 3 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℕ ∈
V) |
5 | | volioof 43528 |
. . . . . . . 8
⊢ (vol
∘ (,)):(ℝ* ×
ℝ*)⟶(0[,]+∞) |
6 | 5 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (vol ∘
(,)):(ℝ* ×
ℝ*)⟶(0[,]+∞)) |
7 | | rexpssxrxp 11020 |
. . . . . . . 8
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
8 | 7 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (ℝ × ℝ)
⊆ (ℝ* × ℝ*)) |
9 | | ovolval5lem2.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
10 | 9 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ (ℝ ×
ℝ)) |
11 | | xp1st 7863 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑛) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘𝑛)) ∈ ℝ) |
12 | 10, 11 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐹‘𝑛)) ∈
ℝ) |
13 | | ovolval5lem2.w |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊 ∈
ℝ+) |
14 | 13 | rpred 12772 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ ℝ) |
15 | 14 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑊 ∈ ℝ) |
16 | | 2nn 12046 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ |
17 | 16 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 2 ∈
ℕ) |
18 | | nnnn0 12240 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
19 | 17, 18 | nnexpcld 13960 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℕ) |
20 | 19 | nnred 11988 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℝ) |
21 | 20 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℝ) |
22 | 19 | nnne0d 12023 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ≠
0) |
23 | 22 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0) |
24 | 15, 21, 23 | redivcld 11803 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ) |
25 | 12, 24 | resubcld 11403 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))) ∈ ℝ) |
26 | | xp2nd 7864 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑛) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘𝑛)) ∈ ℝ) |
27 | 10, 26 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ∈
ℝ) |
28 | 25, 27 | opelxpd 5627 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉 ∈ (ℝ ×
ℝ)) |
29 | | ovolval5lem2.g |
. . . . . . . 8
⊢ 𝐺 = (𝑛 ∈ ℕ ↦
〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉) |
30 | 28, 29 | fmptd 6988 |
. . . . . . 7
⊢ (𝜑 → 𝐺:ℕ⟶(ℝ ×
ℝ)) |
31 | 6, 8, 30 | fcoss 42750 |
. . . . . 6
⊢ (𝜑 → ((vol ∘ (,)) ∘
𝐺):ℕ⟶(0[,]+∞)) |
32 | 4, 31 | sge0xrcl 43923 |
. . . . 5
⊢ (𝜑 →
(Σ^‘((vol ∘ (,)) ∘ 𝐺)) ∈
ℝ*) |
33 | 2, 32 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → 𝑍 ∈
ℝ*) |
34 | | reex 10962 |
. . . . . . . . 9
⊢ ℝ
∈ V |
35 | 34, 34 | xpex 7603 |
. . . . . . . 8
⊢ (ℝ
× ℝ) ∈ V |
36 | 35 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (ℝ × ℝ)
∈ V) |
37 | 36, 4 | elmapd 8629 |
. . . . . 6
⊢ (𝜑 → (𝐺 ∈ ((ℝ × ℝ)
↑m ℕ) ↔ 𝐺:ℕ⟶(ℝ ×
ℝ))) |
38 | 30, 37 | mpbird 256 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ ((ℝ × ℝ)
↑m ℕ)) |
39 | | ovolval5lem2.s |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
([,) ∘ 𝐹)) |
40 | 30 | ffvelrnda 6961 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) ∈ (ℝ ×
ℝ)) |
41 | | xp1st 7863 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘𝑛) ∈ (ℝ × ℝ) →
(1st ‘(𝐺‘𝑛)) ∈ ℝ) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) ∈
ℝ) |
43 | 42 | rexrd 11025 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) ∈
ℝ*) |
44 | | xp2nd 7864 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘𝑛) ∈ (ℝ × ℝ) →
(2nd ‘(𝐺‘𝑛)) ∈ ℝ) |
45 | 40, 44 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) ∈
ℝ) |
46 | 45 | rexrd 11025 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) ∈
ℝ*) |
47 | 13 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑊 ∈
ℝ+) |
48 | 19 | nnrpd 12770 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℝ+) |
49 | 48 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℝ+) |
50 | 47, 49 | rpdivcld 12789 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈
ℝ+) |
51 | 12, 50 | ltsubrpd 12804 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))) < (1st ‘(𝐹‘𝑛))) |
52 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ) |
53 | | opex 5379 |
. . . . . . . . . . . . . . . . . . 19
⊢
〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉 ∈ V |
54 | 53 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ →
〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉 ∈ V) |
55 | 29 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧
〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉 ∈ V) → (𝐺‘𝑛) = 〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉) |
56 | 52, 54, 55 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → (𝐺‘𝑛) = 〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉) |
57 | 56 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ →
(1st ‘(𝐺‘𝑛)) = (1st
‘〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉)) |
58 | | ovex 7308 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))) ∈ V |
59 | | fvex 6787 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘(𝐹‘𝑛)) ∈ V |
60 | | op1stg 7843 |
. . . . . . . . . . . . . . . . . 18
⊢
((((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))) ∈ V ∧ (2nd
‘(𝐹‘𝑛)) ∈ V) →
(1st ‘〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉) = ((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))) |
61 | 58, 59, 60 | mp2an 689 |
. . . . . . . . . . . . . . . . 17
⊢
(1st ‘〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉) = ((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))) |
62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ →
(1st ‘〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉) = ((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))) |
63 | 57, 62 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ →
(1st ‘(𝐺‘𝑛)) = ((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))) |
64 | 63 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) = ((1st
‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))) |
65 | 64 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐺‘𝑛)) < (1st
‘(𝐹‘𝑛)) ↔ ((1st
‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))) < (1st ‘(𝐹‘𝑛)))) |
66 | 51, 65 | mpbird 256 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1st
‘(𝐺‘𝑛)) < (1st
‘(𝐹‘𝑛))) |
67 | 56 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ →
(2nd ‘(𝐺‘𝑛)) = (2nd
‘〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉)) |
68 | 58, 59 | op2nd 7840 |
. . . . . . . . . . . . . . . . 17
⊢
(2nd ‘〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉) = (2nd ‘(𝐹‘𝑛)) |
69 | 68 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ →
(2nd ‘〈((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹‘𝑛))〉) = (2nd ‘(𝐹‘𝑛))) |
70 | 67, 69 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ →
(2nd ‘(𝐺‘𝑛)) = (2nd ‘(𝐹‘𝑛))) |
71 | 70 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐺‘𝑛)) = (2nd
‘(𝐹‘𝑛))) |
72 | 71 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) = (2nd
‘(𝐺‘𝑛))) |
73 | 27, 72 | eqled 11078 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝐹‘𝑛)) ≤ (2nd
‘(𝐺‘𝑛))) |
74 | | icossioo 13172 |
. . . . . . . . . . . 12
⊢
((((1st ‘(𝐺‘𝑛)) ∈ ℝ* ∧
(2nd ‘(𝐺‘𝑛)) ∈ ℝ*) ∧
((1st ‘(𝐺‘𝑛)) < (1st ‘(𝐹‘𝑛)) ∧ (2nd ‘(𝐹‘𝑛)) ≤ (2nd ‘(𝐺‘𝑛)))) → ((1st ‘(𝐹‘𝑛))[,)(2nd ‘(𝐹‘𝑛))) ⊆ ((1st ‘(𝐺‘𝑛))(,)(2nd ‘(𝐺‘𝑛)))) |
75 | 43, 46, 66, 73, 74 | syl22anc 836 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛))[,)(2nd
‘(𝐹‘𝑛))) ⊆ ((1st
‘(𝐺‘𝑛))(,)(2nd
‘(𝐺‘𝑛)))) |
76 | | 1st2nd2 7870 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑛) ∈ (ℝ × ℝ) →
(𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
77 | 10, 76 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = 〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉) |
78 | 77 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ([,)‘(𝐹‘𝑛)) = ([,)‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉)) |
79 | | df-ov 7278 |
. . . . . . . . . . . . . 14
⊢
((1st ‘(𝐹‘𝑛))[,)(2nd ‘(𝐹‘𝑛))) = ([,)‘〈(1st
‘(𝐹‘𝑛)), (2nd
‘(𝐹‘𝑛))〉) |
80 | 79 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐹‘𝑛))[,)(2nd
‘(𝐹‘𝑛))) =
([,)‘〈(1st ‘(𝐹‘𝑛)), (2nd ‘(𝐹‘𝑛))〉)) |
81 | 78, 80 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ([,)‘(𝐹‘𝑛)) = ((1st ‘(𝐹‘𝑛))[,)(2nd ‘(𝐹‘𝑛)))) |
82 | | 1st2nd2 7870 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘𝑛) ∈ (ℝ × ℝ) →
(𝐺‘𝑛) = 〈(1st ‘(𝐺‘𝑛)), (2nd ‘(𝐺‘𝑛))〉) |
83 | 40, 82 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐺‘𝑛) = 〈(1st ‘(𝐺‘𝑛)), (2nd ‘(𝐺‘𝑛))〉) |
84 | 83 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐺‘𝑛)) = ((,)‘〈(1st
‘(𝐺‘𝑛)), (2nd
‘(𝐺‘𝑛))〉)) |
85 | | df-ov 7278 |
. . . . . . . . . . . . . 14
⊢
((1st ‘(𝐺‘𝑛))(,)(2nd ‘(𝐺‘𝑛))) = ((,)‘〈(1st
‘(𝐺‘𝑛)), (2nd
‘(𝐺‘𝑛))〉) |
86 | 85 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐺‘𝑛))(,)(2nd
‘(𝐺‘𝑛))) =
((,)‘〈(1st ‘(𝐺‘𝑛)), (2nd ‘(𝐺‘𝑛))〉)) |
87 | 84, 86 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((,)‘(𝐺‘𝑛)) = ((1st ‘(𝐺‘𝑛))(,)(2nd ‘(𝐺‘𝑛)))) |
88 | 81, 87 | sseq12d 3954 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (([,)‘(𝐹‘𝑛)) ⊆ ((,)‘(𝐺‘𝑛)) ↔ ((1st ‘(𝐹‘𝑛))[,)(2nd ‘(𝐹‘𝑛))) ⊆ ((1st ‘(𝐺‘𝑛))(,)(2nd ‘(𝐺‘𝑛))))) |
89 | 75, 88 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ([,)‘(𝐹‘𝑛)) ⊆ ((,)‘(𝐺‘𝑛))) |
90 | 89 | ralrimiva 3103 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑛 ∈ ℕ ([,)‘(𝐹‘𝑛)) ⊆ ((,)‘(𝐺‘𝑛))) |
91 | | ss2iun 4942 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ℕ ([,)‘(𝐹‘𝑛)) ⊆ ((,)‘(𝐺‘𝑛)) → ∪
𝑛 ∈ ℕ
([,)‘(𝐹‘𝑛)) ⊆ ∪ 𝑛 ∈ ℕ ((,)‘(𝐺‘𝑛))) |
92 | 90, 91 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ ([,)‘(𝐹‘𝑛)) ⊆ ∪ 𝑛 ∈ ℕ ((,)‘(𝐺‘𝑛))) |
93 | | fvex 6787 |
. . . . . . . . . . . . 13
⊢
([,)‘(𝐹‘𝑛)) ∈ V |
94 | 93 | rgenw 3076 |
. . . . . . . . . . . 12
⊢
∀𝑛 ∈
ℕ ([,)‘(𝐹‘𝑛)) ∈ V |
95 | 94 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ ([,)‘(𝐹‘𝑛)) ∈ V) |
96 | | dfiun3g 5873 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ ([,)‘(𝐹‘𝑛)) ∈ V → ∪ 𝑛 ∈ ℕ ([,)‘(𝐹‘𝑛)) = ∪ ran (𝑛 ∈ ℕ ↦
([,)‘(𝐹‘𝑛)))) |
97 | 95, 96 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ ([,)‘(𝐹‘𝑛)) = ∪ ran (𝑛 ∈ ℕ ↦
([,)‘(𝐹‘𝑛)))) |
98 | | icof 42759 |
. . . . . . . . . . . . . . 15
⊢
[,):(ℝ* × ℝ*)⟶𝒫
ℝ* |
99 | 98 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → [,):(ℝ*
× ℝ*)⟶𝒫
ℝ*) |
100 | 9, 8, 99 | fcomptss 42743 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ([,) ∘ 𝐹) = (𝑛 ∈ ℕ ↦ ([,)‘(𝐹‘𝑛)))) |
101 | 100 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ([,)‘(𝐹‘𝑛))) = ([,) ∘ 𝐹)) |
102 | 101 | rneqd 5847 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ ([,)‘(𝐹‘𝑛))) = ran ([,) ∘ 𝐹)) |
103 | 102 | unieqd 4853 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ ran (𝑛 ∈ ℕ ↦ ([,)‘(𝐹‘𝑛))) = ∪ ran ([,)
∘ 𝐹)) |
104 | 97, 103 | eqtr2d 2779 |
. . . . . . . . 9
⊢ (𝜑 → ∪ ran ([,) ∘ 𝐹) = ∪
𝑛 ∈ ℕ
([,)‘(𝐹‘𝑛))) |
105 | | fvex 6787 |
. . . . . . . . . . . . 13
⊢
((,)‘(𝐺‘𝑛)) ∈ V |
106 | 105 | rgenw 3076 |
. . . . . . . . . . . 12
⊢
∀𝑛 ∈
ℕ ((,)‘(𝐺‘𝑛)) ∈ V |
107 | 106 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ ((,)‘(𝐺‘𝑛)) ∈ V) |
108 | | dfiun3g 5873 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ ((,)‘(𝐺‘𝑛)) ∈ V → ∪ 𝑛 ∈ ℕ ((,)‘(𝐺‘𝑛)) = ∪ ran (𝑛 ∈ ℕ ↦
((,)‘(𝐺‘𝑛)))) |
109 | 107, 108 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ ((,)‘(𝐺‘𝑛)) = ∪ ran (𝑛 ∈ ℕ ↦
((,)‘(𝐺‘𝑛)))) |
110 | | ioof 13179 |
. . . . . . . . . . . . . . 15
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ |
111 | 110 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (,):(ℝ*
× ℝ*)⟶𝒫 ℝ) |
112 | 30, 8, 111 | fcomptss 42743 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((,) ∘ 𝐺) = (𝑛 ∈ ℕ ↦ ((,)‘(𝐺‘𝑛)))) |
113 | 112 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((,)‘(𝐺‘𝑛))) = ((,) ∘ 𝐺)) |
114 | 113 | rneqd 5847 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ ((,)‘(𝐺‘𝑛))) = ran ((,) ∘ 𝐺)) |
115 | 114 | unieqd 4853 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ ran (𝑛 ∈ ℕ ↦ ((,)‘(𝐺‘𝑛))) = ∪ ran ((,)
∘ 𝐺)) |
116 | 109, 115 | eqtr2d 2779 |
. . . . . . . . 9
⊢ (𝜑 → ∪ ran ((,) ∘ 𝐺) = ∪
𝑛 ∈ ℕ
((,)‘(𝐺‘𝑛))) |
117 | 104, 116 | sseq12d 3954 |
. . . . . . . 8
⊢ (𝜑 → (∪ ran ([,) ∘ 𝐹) ⊆ ∪ ran
((,) ∘ 𝐺) ↔
∪ 𝑛 ∈ ℕ ([,)‘(𝐹‘𝑛)) ⊆ ∪ 𝑛 ∈ ℕ ((,)‘(𝐺‘𝑛)))) |
118 | 92, 117 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → ∪ ran ([,) ∘ 𝐹) ⊆ ∪ ran
((,) ∘ 𝐺)) |
119 | 39, 118 | sstrd 3931 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
((,) ∘ 𝐺)) |
120 | 119, 2 | jca 512 |
. . . . 5
⊢ (𝜑 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝐺) ∧ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝐺)))) |
121 | | coeq2 5767 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐺 → ((,) ∘ 𝑓) = ((,) ∘ 𝐺)) |
122 | 121 | rneqd 5847 |
. . . . . . . . 9
⊢ (𝑓 = 𝐺 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺)) |
123 | 122 | unieqd 4853 |
. . . . . . . 8
⊢ (𝑓 = 𝐺 → ∪ ran
((,) ∘ 𝑓) = ∪ ran ((,) ∘ 𝐺)) |
124 | 123 | sseq2d 3953 |
. . . . . . 7
⊢ (𝑓 = 𝐺 → (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ↔
𝐴 ⊆ ∪ ran ((,) ∘ 𝐺))) |
125 | | coeq2 5767 |
. . . . . . . . 9
⊢ (𝑓 = 𝐺 → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘
𝐺)) |
126 | 125 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑓 = 𝐺 →
(Σ^‘((vol ∘ (,)) ∘ 𝑓)) =
(Σ^‘((vol ∘ (,)) ∘ 𝐺))) |
127 | 126 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑓 = 𝐺 → (𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝐺)))) |
128 | 124, 127 | anbi12d 631 |
. . . . . 6
⊢ (𝑓 = 𝐺 → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝐺) ∧ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝐺))))) |
129 | 128 | rspcev 3561 |
. . . . 5
⊢ ((𝐺 ∈ ((ℝ ×
ℝ) ↑m ℕ) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝐺) ∧ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝐺)))) → ∃𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))) |
130 | 38, 120, 129 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))) |
131 | 33, 130 | jca 512 |
. . 3
⊢ (𝜑 → (𝑍 ∈ ℝ* ∧
∃𝑓 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
132 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑧 = 𝑍 → (𝑧 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))) |
133 | 132 | anbi2d 629 |
. . . . 5
⊢ (𝑧 = 𝑍 → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
134 | 133 | rexbidv 3226 |
. . . 4
⊢ (𝑧 = 𝑍 → (∃𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
135 | | ovolval5lem2.q |
. . . 4
⊢ 𝑄 = {𝑧 ∈ ℝ* ∣
∃𝑓 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑧 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))} |
136 | 134, 135 | elrab2 3627 |
. . 3
⊢ (𝑍 ∈ 𝑄 ↔ (𝑍 ∈ ℝ* ∧
∃𝑓 ∈ ((ℝ
× ℝ) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑍 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))))) |
137 | 131, 136 | sylibr 233 |
. 2
⊢ (𝜑 → 𝑍 ∈ 𝑄) |
138 | | 2fveq3 6779 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (1st ‘(𝐹‘𝑚)) = (1st ‘(𝐹‘𝑛))) |
139 | | 2fveq3 6779 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (2nd ‘(𝐹‘𝑚)) = (2nd ‘(𝐹‘𝑛))) |
140 | 138, 139 | breq12d 5087 |
. . . . 5
⊢ (𝑚 = 𝑛 → ((1st ‘(𝐹‘𝑚)) < (2nd ‘(𝐹‘𝑚)) ↔ (1st ‘(𝐹‘𝑛)) < (2nd ‘(𝐹‘𝑛)))) |
141 | 140 | cbvrabv 3426 |
. . . 4
⊢ {𝑚 ∈ ℕ ∣
(1st ‘(𝐹‘𝑚)) < (2nd ‘(𝐹‘𝑚))} = {𝑛 ∈ ℕ ∣ (1st
‘(𝐹‘𝑛)) < (2nd
‘(𝐹‘𝑛))} |
142 | 12, 27, 13, 141 | ovolval5lem1 44190 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ℕ ↦
(vol‘(((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹‘𝑛)))))) ≤
((Σ^‘(𝑛 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑛))[,)(2nd ‘(𝐹‘𝑛)))))) +𝑒 𝑊)) |
143 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑛𝐺 |
144 | 30, 8 | fssd 6618 |
. . . . . . . 8
⊢ (𝜑 → 𝐺:ℕ⟶(ℝ* ×
ℝ*)) |
145 | 143, 144 | volioofmpt 43535 |
. . . . . . 7
⊢ (𝜑 → ((vol ∘ (,)) ∘
𝐺) = (𝑛 ∈ ℕ ↦
(vol‘((1st ‘(𝐺‘𝑛))(,)(2nd ‘(𝐺‘𝑛)))))) |
146 | 64, 71 | oveq12d 7293 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝐺‘𝑛))(,)(2nd
‘(𝐺‘𝑛))) = (((1st
‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹‘𝑛)))) |
147 | 146 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(vol‘((1st ‘(𝐺‘𝑛))(,)(2nd ‘(𝐺‘𝑛)))) = (vol‘(((1st
‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹‘𝑛))))) |
148 | 147 | mpteq2dva 5174 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ ℕ ↦
(vol‘((1st ‘(𝐺‘𝑛))(,)(2nd ‘(𝐺‘𝑛))))) = (𝑛 ∈ ℕ ↦
(vol‘(((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹‘𝑛)))))) |
149 | 145, 148 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((vol ∘ (,)) ∘
𝐺) = (𝑛 ∈ ℕ ↦
(vol‘(((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹‘𝑛)))))) |
150 | 149 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 →
(Σ^‘((vol ∘ (,)) ∘ 𝐺)) =
(Σ^‘(𝑛 ∈ ℕ ↦
(vol‘(((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹‘𝑛))))))) |
151 | 2, 150 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → 𝑍 =
(Σ^‘(𝑛 ∈ ℕ ↦
(vol‘(((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹‘𝑛))))))) |
152 | | ovolval5lem2.y |
. . . . . 6
⊢ (𝜑 → 𝑌 =
(Σ^‘((vol ∘ [,)) ∘ 𝐹))) |
153 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑛𝐹 |
154 | | ressxr 11019 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℝ* |
155 | | xpss2 5609 |
. . . . . . . . . . 11
⊢ (ℝ
⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ
× ℝ*)) |
156 | 154, 155 | ax-mp 5 |
. . . . . . . . . 10
⊢ (ℝ
× ℝ) ⊆ (ℝ × ℝ*) |
157 | 156 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ × ℝ)
⊆ (ℝ × ℝ*)) |
158 | 9, 157 | fssd 6618 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ*)) |
159 | 153, 158 | volicofmpt 43538 |
. . . . . . 7
⊢ (𝜑 → ((vol ∘ [,)) ∘
𝐹) = (𝑛 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑛))[,)(2nd ‘(𝐹‘𝑛)))))) |
160 | 159 | fveq2d 6778 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘((vol ∘ [,)) ∘ 𝐹)) =
(Σ^‘(𝑛 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑛))[,)(2nd ‘(𝐹‘𝑛))))))) |
161 | 152, 160 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → 𝑌 =
(Σ^‘(𝑛 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑛))[,)(2nd ‘(𝐹‘𝑛))))))) |
162 | 161 | oveq1d 7290 |
. . . 4
⊢ (𝜑 → (𝑌 +𝑒 𝑊) =
((Σ^‘(𝑛 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑛))[,)(2nd ‘(𝐹‘𝑛)))))) +𝑒 𝑊)) |
163 | 151, 162 | breq12d 5087 |
. . 3
⊢ (𝜑 → (𝑍 ≤ (𝑌 +𝑒 𝑊) ↔
(Σ^‘(𝑛 ∈ ℕ ↦
(vol‘(((1st ‘(𝐹‘𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹‘𝑛)))))) ≤
((Σ^‘(𝑛 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑛))[,)(2nd ‘(𝐹‘𝑛)))))) +𝑒 𝑊))) |
164 | 142, 163 | mpbird 256 |
. 2
⊢ (𝜑 → 𝑍 ≤ (𝑌 +𝑒 𝑊)) |
165 | | breq1 5077 |
. . 3
⊢ (𝑧 = 𝑍 → (𝑧 ≤ (𝑌 +𝑒 𝑊) ↔ 𝑍 ≤ (𝑌 +𝑒 𝑊))) |
166 | 165 | rspcev 3561 |
. 2
⊢ ((𝑍 ∈ 𝑄 ∧ 𝑍 ≤ (𝑌 +𝑒 𝑊)) → ∃𝑧 ∈ 𝑄 𝑧 ≤ (𝑌 +𝑒 𝑊)) |
167 | 137, 164,
166 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑧 ∈ 𝑄 𝑧 ≤ (𝑌 +𝑒 𝑊)) |