Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval5lem2 Structured version   Visualization version   GIF version

Theorem ovolval5lem2 46574
Description: ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩ ∈ (ℝ × ℝ)). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval5lem2.q 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
ovolval5lem2.y (𝜑𝑌 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
ovolval5lem2.z 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))
ovolval5lem2.f (𝜑𝐹:ℕ⟶(ℝ × ℝ))
ovolval5lem2.s (𝜑𝐴 ran ([,) ∘ 𝐹))
ovolval5lem2.w (𝜑𝑊 ∈ ℝ+)
ovolval5lem2.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩)
Assertion
Ref Expression
ovolval5lem2 (𝜑 → ∃𝑧𝑄 𝑧 ≤ (𝑌 +𝑒 𝑊))
Distinct variable groups:   𝐴,𝑓,𝑧   𝑛,𝐹   𝑓,𝐺   𝑛,𝐺   𝑧,𝑄   𝑛,𝑊   𝑧,𝑊   𝑧,𝑌   𝑓,𝑍,𝑧   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑧,𝑓)   𝐴(𝑛)   𝑄(𝑓,𝑛)   𝐹(𝑧,𝑓)   𝐺(𝑧)   𝑊(𝑓)   𝑌(𝑓,𝑛)   𝑍(𝑛)

Proof of Theorem ovolval5lem2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 ovolval5lem2.z . . . . . 6 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))
21a1i 11 . . . . 5 (𝜑𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
3 nnex 12299 . . . . . . 7 ℕ ∈ V
43a1i 11 . . . . . 6 (𝜑 → ℕ ∈ V)
5 volioof 45908 . . . . . . . 8 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
65a1i 11 . . . . . . 7 (𝜑 → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
7 rexpssxrxp 11335 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
87a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
9 ovolval5lem2.f . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
109ffvelcdmda 7118 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ × ℝ))
11 xp1st 8062 . . . . . . . . . . 11 ((𝐹𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
1210, 11syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
13 ovolval5lem2.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ ℝ+)
1413rpred 13099 . . . . . . . . . . . 12 (𝜑𝑊 ∈ ℝ)
1514adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ)
16 2nn 12366 . . . . . . . . . . . . . . 15 2 ∈ ℕ
1716a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 2 ∈ ℕ)
18 nnnn0 12560 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1917, 18nnexpcld 14294 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
2019nnred 12308 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ)
2120adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
2219nnne0d 12343 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2↑𝑛) ≠ 0)
2322adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
2415, 21, 23redivcld 12122 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ)
2512, 24resubcld 11718 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))) ∈ ℝ)
26 xp2nd 8063 . . . . . . . . . 10 ((𝐹𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
2710, 26syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
2825, 27opelxpd 5739 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩ ∈ (ℝ × ℝ))
29 ovolval5lem2.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩)
3028, 29fmptd 7148 . . . . . . 7 (𝜑𝐺:ℕ⟶(ℝ × ℝ))
316, 8, 30fcoss 45117 . . . . . 6 (𝜑 → ((vol ∘ (,)) ∘ 𝐺):ℕ⟶(0[,]+∞))
324, 31sge0xrcl 46306 . . . . 5 (𝜑 → (Σ^‘((vol ∘ (,)) ∘ 𝐺)) ∈ ℝ*)
332, 32eqeltrd 2844 . . . 4 (𝜑𝑍 ∈ ℝ*)
34 reex 11275 . . . . . . . . 9 ℝ ∈ V
3534, 34xpex 7788 . . . . . . . 8 (ℝ × ℝ) ∈ V
3635a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ∈ V)
3736, 4elmapd 8898 . . . . . 6 (𝜑 → (𝐺 ∈ ((ℝ × ℝ) ↑m ℕ) ↔ 𝐺:ℕ⟶(ℝ × ℝ)))
3830, 37mpbird 257 . . . . 5 (𝜑𝐺 ∈ ((ℝ × ℝ) ↑m ℕ))
39 ovolval5lem2.s . . . . . . 7 (𝜑𝐴 ran ([,) ∘ 𝐹))
4030ffvelcdmda 7118 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ (ℝ × ℝ))
41 xp1st 8062 . . . . . . . . . . . . . 14 ((𝐺𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
4240, 41syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ℝ)
4342rexrd 11340 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) ∈ ℝ*)
44 xp2nd 8063 . . . . . . . . . . . . . 14 ((𝐺𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4540, 44syl 17 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) ∈ ℝ)
4645rexrd 11340 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) ∈ ℝ*)
4713adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑊 ∈ ℝ+)
4819nnrpd 13097 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
4948adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
5047, 49rpdivcld 13116 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝑊 / (2↑𝑛)) ∈ ℝ+)
5112, 50ltsubrpd 13131 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))) < (1st ‘(𝐹𝑛)))
52 id 22 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
53 opex 5484 . . . . . . . . . . . . . . . . . . 19 ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩ ∈ V
5453a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩ ∈ V)
5529fvmpt2 7040 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩ ∈ V) → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩)
5652, 54, 55syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐺𝑛) = ⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩)
5756fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = (1st ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩))
58 ovex 7481 . . . . . . . . . . . . . . . . . 18 ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))) ∈ V
59 fvex 6933 . . . . . . . . . . . . . . . . . 18 (2nd ‘(𝐹𝑛)) ∈ V
60 op1stg 8042 . . . . . . . . . . . . . . . . . 18 ((((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))) ∈ V ∧ (2nd ‘(𝐹𝑛)) ∈ V) → (1st ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))))
6158, 59, 60mp2an 691 . . . . . . . . . . . . . . . . 17 (1st ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))
6261a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1st ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))))
6357, 62eqtrd 2780 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))))
6463adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) = ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))))
6564breq1d 5176 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛)) < (1st ‘(𝐹𝑛)) ↔ ((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))) < (1st ‘(𝐹𝑛))))
6651, 65mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐺𝑛)) < (1st ‘(𝐹𝑛)))
6756fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = (2nd ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩))
6858, 59op2nd 8039 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩) = (2nd ‘(𝐹𝑛))
6968a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2nd ‘⟨((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛))), (2nd ‘(𝐹𝑛))⟩) = (2nd ‘(𝐹𝑛)))
7067, 69eqtrd 2780 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2nd ‘(𝐺𝑛)) = (2nd ‘(𝐹𝑛)))
7170adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐺𝑛)) = (2nd ‘(𝐹𝑛)))
7271eqcomd 2746 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) = (2nd ‘(𝐺𝑛)))
7327, 72eqled 11393 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ≤ (2nd ‘(𝐺𝑛)))
74 icossioo 13500 . . . . . . . . . . . 12 ((((1st ‘(𝐺𝑛)) ∈ ℝ* ∧ (2nd ‘(𝐺𝑛)) ∈ ℝ*) ∧ ((1st ‘(𝐺𝑛)) < (1st ‘(𝐹𝑛)) ∧ (2nd ‘(𝐹𝑛)) ≤ (2nd ‘(𝐺𝑛)))) → ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))))
7543, 46, 66, 73, 74syl22anc 838 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))))
76 1st2nd2 8069 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ (ℝ × ℝ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
7710, 76syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
7877fveq2d 6924 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ([,)‘(𝐹𝑛)) = ([,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
79 df-ov 7451 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))) = ([,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
8079a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))) = ([,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
8178, 80eqtr4d 2783 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ([,)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))))
82 1st2nd2 8069 . . . . . . . . . . . . . . 15 ((𝐺𝑛) ∈ (ℝ × ℝ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
8340, 82syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
8483fveq2d 6924 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((,)‘(𝐺𝑛)) = ((,)‘⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩))
85 df-ov 7451 . . . . . . . . . . . . . 14 ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))) = ((,)‘⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩)
8685a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))) = ((,)‘⟨(1st ‘(𝐺𝑛)), (2nd ‘(𝐺𝑛))⟩))
8784, 86eqtr4d 2783 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((,)‘(𝐺𝑛)) = ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))))
8881, 87sseq12d 4042 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (([,)‘(𝐹𝑛)) ⊆ ((,)‘(𝐺𝑛)) ↔ ((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛)))))
8975, 88mpbird 257 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ([,)‘(𝐹𝑛)) ⊆ ((,)‘(𝐺𝑛)))
9089ralrimiva 3152 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ⊆ ((,)‘(𝐺𝑛)))
91 ss2iun 5033 . . . . . . . . 9 (∀𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ⊆ ((,)‘(𝐺𝑛)) → 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ⊆ 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)))
9290, 91syl 17 . . . . . . . 8 (𝜑 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ⊆ 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)))
93 fvex 6933 . . . . . . . . . . . . 13 ([,)‘(𝐹𝑛)) ∈ V
9493rgenw 3071 . . . . . . . . . . . 12 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ∈ V
9594a1i 11 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ∈ V)
96 dfiun3g 5990 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ∈ V → 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) = ran (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))))
9795, 96syl 17 . . . . . . . . . 10 (𝜑 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) = ran (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))))
98 icof 45126 . . . . . . . . . . . . . . 15 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
9998a1i 11 . . . . . . . . . . . . . 14 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
1009, 8, 99fcomptss 45110 . . . . . . . . . . . . 13 (𝜑 → ([,) ∘ 𝐹) = (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))))
101100eqcomd 2746 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))) = ([,) ∘ 𝐹))
102101rneqd 5963 . . . . . . . . . . 11 (𝜑 → ran (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))) = ran ([,) ∘ 𝐹))
103102unieqd 4944 . . . . . . . . . 10 (𝜑 ran (𝑛 ∈ ℕ ↦ ([,)‘(𝐹𝑛))) = ran ([,) ∘ 𝐹))
10497, 103eqtr2d 2781 . . . . . . . . 9 (𝜑 ran ([,) ∘ 𝐹) = 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)))
105 fvex 6933 . . . . . . . . . . . . 13 ((,)‘(𝐺𝑛)) ∈ V
106105rgenw 3071 . . . . . . . . . . . 12 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)) ∈ V
107106a1i 11 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ ((,)‘(𝐺𝑛)) ∈ V)
108 dfiun3g 5990 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ((,)‘(𝐺𝑛)) ∈ V → 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)) = ran (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))))
109107, 108syl 17 . . . . . . . . . 10 (𝜑 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)) = ran (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))))
110 ioof 13507 . . . . . . . . . . . . . . 15 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
111110a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
11230, 8, 111fcomptss 45110 . . . . . . . . . . . . 13 (𝜑 → ((,) ∘ 𝐺) = (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))))
113112eqcomd 2746 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))) = ((,) ∘ 𝐺))
114113rneqd 5963 . . . . . . . . . . 11 (𝜑 → ran (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))) = ran ((,) ∘ 𝐺))
115114unieqd 4944 . . . . . . . . . 10 (𝜑 ran (𝑛 ∈ ℕ ↦ ((,)‘(𝐺𝑛))) = ran ((,) ∘ 𝐺))
116109, 115eqtr2d 2781 . . . . . . . . 9 (𝜑 ran ((,) ∘ 𝐺) = 𝑛 ∈ ℕ ((,)‘(𝐺𝑛)))
117104, 116sseq12d 4042 . . . . . . . 8 (𝜑 → ( ran ([,) ∘ 𝐹) ⊆ ran ((,) ∘ 𝐺) ↔ 𝑛 ∈ ℕ ([,)‘(𝐹𝑛)) ⊆ 𝑛 ∈ ℕ ((,)‘(𝐺𝑛))))
11892, 117mpbird 257 . . . . . . 7 (𝜑 ran ([,) ∘ 𝐹) ⊆ ran ((,) ∘ 𝐺))
11939, 118sstrd 4019 . . . . . 6 (𝜑𝐴 ran ((,) ∘ 𝐺))
120119, 2jca 511 . . . . 5 (𝜑 → (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
121 coeq2 5883 . . . . . . . . . 10 (𝑓 = 𝐺 → ((,) ∘ 𝑓) = ((,) ∘ 𝐺))
122121rneqd 5963 . . . . . . . . 9 (𝑓 = 𝐺 → ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
123122unieqd 4944 . . . . . . . 8 (𝑓 = 𝐺 ran ((,) ∘ 𝑓) = ran ((,) ∘ 𝐺))
124123sseq2d 4041 . . . . . . 7 (𝑓 = 𝐺 → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ 𝐺)))
125 coeq2 5883 . . . . . . . . 9 (𝑓 = 𝐺 → ((vol ∘ (,)) ∘ 𝑓) = ((vol ∘ (,)) ∘ 𝐺))
126125fveq2d 6924 . . . . . . . 8 (𝑓 = 𝐺 → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))
127126eqeq2d 2751 . . . . . . 7 (𝑓 = 𝐺 → (𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺))))
128124, 127anbi12d 631 . . . . . 6 (𝑓 = 𝐺 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))))
129128rspcev 3635 . . . . 5 ((𝐺 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐴 ran ((,) ∘ 𝐺) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝐺)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
13038, 120, 129syl2anc 583 . . . 4 (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
13133, 130jca 511 . . 3 (𝜑 → (𝑍 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
132 eqeq1 2744 . . . . . 6 (𝑧 = 𝑍 → (𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))))
133132anbi2d 629 . . . . 5 (𝑧 = 𝑍 → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
134133rexbidv 3185 . . . 4 (𝑧 = 𝑍 → (∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
135 ovolval5lem2.q . . . 4 𝑄 = {𝑧 ∈ ℝ* ∣ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑧 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
136134, 135elrab2 3711 . . 3 (𝑍𝑄 ↔ (𝑍 ∈ ℝ* ∧ ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))))
137131, 136sylibr 234 . 2 (𝜑𝑍𝑄)
138 2fveq3 6925 . . . . . 6 (𝑚 = 𝑛 → (1st ‘(𝐹𝑚)) = (1st ‘(𝐹𝑛)))
139 2fveq3 6925 . . . . . 6 (𝑚 = 𝑛 → (2nd ‘(𝐹𝑚)) = (2nd ‘(𝐹𝑛)))
140138, 139breq12d 5179 . . . . 5 (𝑚 = 𝑛 → ((1st ‘(𝐹𝑚)) < (2nd ‘(𝐹𝑚)) ↔ (1st ‘(𝐹𝑛)) < (2nd ‘(𝐹𝑛))))
141140cbvrabv 3454 . . . 4 {𝑚 ∈ ℕ ∣ (1st ‘(𝐹𝑚)) < (2nd ‘(𝐹𝑚))} = {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) < (2nd ‘(𝐹𝑛))}
14212, 27, 13, 141ovolval5lem1 46573 . . 3 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛)))))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛)))))) +𝑒 𝑊))
143 nfcv 2908 . . . . . . . 8 𝑛𝐺
14430, 8fssd 6764 . . . . . . . 8 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
145143, 144volioofmpt 45915 . . . . . . 7 (𝜑 → ((vol ∘ (,)) ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))))))
14664, 71oveq12d 7466 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))) = (((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛))))
147146fveq2d 6924 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (vol‘((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛)))) = (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛)))))
148147mpteq2dva 5266 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐺𝑛))(,)(2nd ‘(𝐺𝑛))))) = (𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛))))))
149145, 148eqtrd 2780 . . . . . 6 (𝜑 → ((vol ∘ (,)) ∘ 𝐺) = (𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛))))))
150149fveq2d 6924 . . . . 5 (𝜑 → (Σ^‘((vol ∘ (,)) ∘ 𝐺)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛)))))))
1512, 150eqtrd 2780 . . . 4 (𝜑𝑍 = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛)))))))
152 ovolval5lem2.y . . . . . 6 (𝜑𝑌 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
153 nfcv 2908 . . . . . . . 8 𝑛𝐹
154 ressxr 11334 . . . . . . . . . . 11 ℝ ⊆ ℝ*
155 xpss2 5720 . . . . . . . . . . 11 (ℝ ⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
156154, 155ax-mp 5 . . . . . . . . . 10 (ℝ × ℝ) ⊆ (ℝ × ℝ*)
157156a1i 11 . . . . . . . . 9 (𝜑 → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
1589, 157fssd 6764 . . . . . . . 8 (𝜑𝐹:ℕ⟶(ℝ × ℝ*))
159153, 158volicofmpt 45918 . . . . . . 7 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛))))))
160159fveq2d 6924 . . . . . 6 (𝜑 → (Σ^‘((vol ∘ [,)) ∘ 𝐹)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛)))))))
161152, 160eqtrd 2780 . . . . 5 (𝜑𝑌 = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛)))))))
162161oveq1d 7463 . . . 4 (𝜑 → (𝑌 +𝑒 𝑊) = ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛)))))) +𝑒 𝑊))
163151, 162breq12d 5179 . . 3 (𝜑 → (𝑍 ≤ (𝑌 +𝑒 𝑊) ↔ (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(((1st ‘(𝐹𝑛)) − (𝑊 / (2↑𝑛)))(,)(2nd ‘(𝐹𝑛)))))) ≤ ((Σ^‘(𝑛 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑛))[,)(2nd ‘(𝐹𝑛)))))) +𝑒 𝑊)))
164142, 163mpbird 257 . 2 (𝜑𝑍 ≤ (𝑌 +𝑒 𝑊))
165 breq1 5169 . . 3 (𝑧 = 𝑍 → (𝑧 ≤ (𝑌 +𝑒 𝑊) ↔ 𝑍 ≤ (𝑌 +𝑒 𝑊)))
166165rspcev 3635 . 2 ((𝑍𝑄𝑍 ≤ (𝑌 +𝑒 𝑊)) → ∃𝑧𝑄 𝑧 ≤ (𝑌 +𝑒 𝑊))
167137, 164, 166syl2anc 583 1 (𝜑 → ∃𝑧𝑄 𝑧 ≤ (𝑌 +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622  cop 4654   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249   × cxp 5698  ran crn 5701  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  m cmap 8884  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  +crp 13057   +𝑒 cxad 13173  (,)cioo 13407  [,)cico 13409  [,]cicc 13410  cexp 14112  volcvol 25517  Σ^csumge0 46283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519  df-sumge0 46284
This theorem is referenced by:  ovolval5lem3  46575
  Copyright terms: Public domain W3C validator