Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoss | Structured version Visualization version GIF version |
Description: Composition of two mappings. Similar to fco 6620, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
fcoss.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcoss.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
fcoss.g | ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) |
Ref | Expression |
---|---|
fcoss | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcoss.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcoss.g | . . 3 ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) | |
3 | fcoss.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
4 | 2, 3 | fssd 6614 | . 2 ⊢ (𝜑 → 𝐺:𝐷⟶𝐴) |
5 | fco 6620 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐷⟶𝐴) → (𝐹 ∘ 𝐺):𝐷⟶𝐵) | |
6 | 1, 4, 5 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3891 ∘ ccom 5592 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: volicoff 43490 voliooicof 43491 ovolval2 44136 ovolval5lem2 44145 ovnovollem1 44148 ovnovollem2 44149 |
Copyright terms: Public domain | W3C validator |