Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoss Structured version   Visualization version   GIF version

Theorem fcoss 45234
Description: Composition of two mappings. Similar to fco 6730, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fcoss.f (𝜑𝐹:𝐴𝐵)
fcoss.c (𝜑𝐶𝐴)
fcoss.g (𝜑𝐺:𝐷𝐶)
Assertion
Ref Expression
fcoss (𝜑 → (𝐹𝐺):𝐷𝐵)

Proof of Theorem fcoss
StepHypRef Expression
1 fcoss.f . 2 (𝜑𝐹:𝐴𝐵)
2 fcoss.g . . 3 (𝜑𝐺:𝐷𝐶)
3 fcoss.c . . 3 (𝜑𝐶𝐴)
42, 3fssd 6723 . 2 (𝜑𝐺:𝐷𝐴)
5 fco 6730 . 2 ((𝐹:𝐴𝐵𝐺:𝐷𝐴) → (𝐹𝐺):𝐷𝐵)
61, 4, 5syl2anc 584 1 (𝜑 → (𝐹𝐺):𝐷𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3926  ccom 5658  wf 6527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6533  df-fn 6534  df-f 6535
This theorem is referenced by:  volicoff  46024  voliooicof  46025  ovolval2  46673  ovolval5lem2  46682  ovolval5lem3  46683  ovnovollem1  46685  ovnovollem2  46686
  Copyright terms: Public domain W3C validator