Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoss | Structured version Visualization version GIF version |
Description: Composition of two mappings. Similar to fco 6661, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
fcoss.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcoss.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
fcoss.g | ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) |
Ref | Expression |
---|---|
fcoss | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcoss.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcoss.g | . . 3 ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) | |
3 | fcoss.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
4 | 2, 3 | fssd 6655 | . 2 ⊢ (𝜑 → 𝐺:𝐷⟶𝐴) |
5 | fco 6661 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐷⟶𝐴) → (𝐹 ∘ 𝐺):𝐷⟶𝐵) | |
6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3897 ∘ ccom 5611 ⟶wf 6461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-fun 6467 df-fn 6468 df-f 6469 |
This theorem is referenced by: volicoff 43773 voliooicof 43774 ovolval2 44420 ovolval5lem2 44429 ovolval5lem3 44430 ovnovollem1 44432 ovnovollem2 44433 |
Copyright terms: Public domain | W3C validator |