Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoss Structured version   Visualization version   GIF version

Theorem fcoss 45215
Description: Composition of two mappings. Similar to fco 6760, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fcoss.f (𝜑𝐹:𝐴𝐵)
fcoss.c (𝜑𝐶𝐴)
fcoss.g (𝜑𝐺:𝐷𝐶)
Assertion
Ref Expression
fcoss (𝜑 → (𝐹𝐺):𝐷𝐵)

Proof of Theorem fcoss
StepHypRef Expression
1 fcoss.f . 2 (𝜑𝐹:𝐴𝐵)
2 fcoss.g . . 3 (𝜑𝐺:𝐷𝐶)
3 fcoss.c . . 3 (𝜑𝐶𝐴)
42, 3fssd 6753 . 2 (𝜑𝐺:𝐷𝐴)
5 fco 6760 . 2 ((𝐹:𝐴𝐵𝐺:𝐷𝐴) → (𝐹𝐺):𝐷𝐵)
61, 4, 5syl2anc 584 1 (𝜑 → (𝐹𝐺):𝐷𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3951  ccom 5689  wf 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-fun 6563  df-fn 6564  df-f 6565
This theorem is referenced by:  volicoff  46010  voliooicof  46011  ovolval2  46659  ovolval5lem2  46668  ovolval5lem3  46669  ovnovollem1  46671  ovnovollem2  46672
  Copyright terms: Public domain W3C validator