| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoss | Structured version Visualization version GIF version | ||
| Description: Composition of two mappings. Similar to fco 6675, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| fcoss.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fcoss.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| fcoss.g | ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) |
| Ref | Expression |
|---|---|
| fcoss | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcoss.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | fcoss.g | . . 3 ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) | |
| 3 | fcoss.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 4 | 2, 3 | fssd 6668 | . 2 ⊢ (𝜑 → 𝐺:𝐷⟶𝐴) |
| 5 | fco 6675 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐷⟶𝐴) → (𝐹 ∘ 𝐺):𝐷⟶𝐵) | |
| 6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3902 ∘ ccom 5620 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: volicoff 46032 voliooicof 46033 ovolval2 46681 ovolval5lem2 46690 ovolval5lem3 46691 ovnovollem1 46693 ovnovollem2 46694 |
| Copyright terms: Public domain | W3C validator |