![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoss | Structured version Visualization version GIF version |
Description: Composition of two mappings. Similar to fco 6738, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
fcoss.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcoss.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
fcoss.g | ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) |
Ref | Expression |
---|---|
fcoss | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcoss.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcoss.g | . . 3 ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) | |
3 | fcoss.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
4 | 2, 3 | fssd 6732 | . 2 ⊢ (𝜑 → 𝐺:𝐷⟶𝐴) |
5 | fco 6738 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐷⟶𝐴) → (𝐹 ∘ 𝐺):𝐷⟶𝐵) | |
6 | 1, 4, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3947 ∘ ccom 5679 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6542 df-fn 6543 df-f 6544 |
This theorem is referenced by: volicoff 44697 voliooicof 44698 ovolval2 45346 ovolval5lem2 45355 ovolval5lem3 45356 ovnovollem1 45358 ovnovollem2 45359 |
Copyright terms: Public domain | W3C validator |