Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoss | Structured version Visualization version GIF version |
Description: Composition of two mappings. Similar to fco 6654, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
fcoss.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcoss.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
fcoss.g | ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) |
Ref | Expression |
---|---|
fcoss | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcoss.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fcoss.g | . . 3 ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) | |
3 | fcoss.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
4 | 2, 3 | fssd 6648 | . 2 ⊢ (𝜑 → 𝐺:𝐷⟶𝐴) |
5 | fco 6654 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐷⟶𝐴) → (𝐹 ∘ 𝐺):𝐷⟶𝐵) | |
6 | 1, 4, 5 | syl2anc 585 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3892 ∘ ccom 5604 ⟶wf 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-fun 6460 df-fn 6461 df-f 6462 |
This theorem is referenced by: volicoff 43765 voliooicof 43766 ovolval2 44412 ovolval5lem2 44421 ovolval5lem3 44422 ovnovollem1 44424 ovnovollem2 44425 |
Copyright terms: Public domain | W3C validator |