Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoss Structured version   Visualization version   GIF version

Theorem fcoss 45246
Description: Composition of two mappings. Similar to fco 6675, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fcoss.f (𝜑𝐹:𝐴𝐵)
fcoss.c (𝜑𝐶𝐴)
fcoss.g (𝜑𝐺:𝐷𝐶)
Assertion
Ref Expression
fcoss (𝜑 → (𝐹𝐺):𝐷𝐵)

Proof of Theorem fcoss
StepHypRef Expression
1 fcoss.f . 2 (𝜑𝐹:𝐴𝐵)
2 fcoss.g . . 3 (𝜑𝐺:𝐷𝐶)
3 fcoss.c . . 3 (𝜑𝐶𝐴)
42, 3fssd 6668 . 2 (𝜑𝐺:𝐷𝐴)
5 fco 6675 . 2 ((𝐹:𝐴𝐵𝐺:𝐷𝐴) → (𝐹𝐺):𝐷𝐵)
61, 4, 5syl2anc 584 1 (𝜑 → (𝐹𝐺):𝐷𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3902  ccom 5620  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  volicoff  46032  voliooicof  46033  ovolval2  46681  ovolval5lem2  46690  ovolval5lem3  46691  ovnovollem1  46693  ovnovollem2  46694
  Copyright terms: Public domain W3C validator