Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliooicof Structured version   Visualization version   GIF version

Theorem voliooicof 46025
Description: The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
voliooicof.1 (𝜑𝐹:𝐴⟶(ℝ × ℝ))
Assertion
Ref Expression
voliooicof (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹))

Proof of Theorem voliooicof
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 volioof 46016 . . . . 5 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
21a1i 11 . . . 4 (𝜑 → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
3 rexpssxrxp 11280 . . . . 5 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
43a1i 11 . . . 4 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
5 voliooicof.1 . . . 4 (𝜑𝐹:𝐴⟶(ℝ × ℝ))
62, 4, 5fcoss 45234 . . 3 (𝜑 → ((vol ∘ (,)) ∘ 𝐹):𝐴⟶(0[,]+∞))
76ffnd 6707 . 2 (𝜑 → ((vol ∘ (,)) ∘ 𝐹) Fn 𝐴)
8 volf 25482 . . . . . 6 vol:dom vol⟶(0[,]+∞)
98a1i 11 . . . . 5 (𝜑 → vol:dom vol⟶(0[,]+∞))
10 icof 45243 . . . . . . . . . 10 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
1110a1i 11 . . . . . . . . 9 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
1211, 4, 5fcoss 45234 . . . . . . . 8 (𝜑 → ([,) ∘ 𝐹):𝐴⟶𝒫 ℝ*)
1312ffnd 6707 . . . . . . 7 (𝜑 → ([,) ∘ 𝐹) Fn 𝐴)
145adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶(ℝ × ℝ))
15 simpr 484 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
1614, 15fvovco 45217 . . . . . . . . 9 ((𝜑𝑥𝐴) → (([,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))))
175ffvelcdmda 7074 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ (ℝ × ℝ))
18 xp1st 8020 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑥)) ∈ ℝ)
1917, 18syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (1st ‘(𝐹𝑥)) ∈ ℝ)
20 xp2nd 8021 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑥)) ∈ ℝ)
2117, 20syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (2nd ‘(𝐹𝑥)) ∈ ℝ)
2221rexrd 11285 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
23 icombl 25517 . . . . . . . . . 10 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ*) → ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))) ∈ dom vol)
2419, 22, 23syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))) ∈ dom vol)
2516, 24eqeltrd 2834 . . . . . . . 8 ((𝜑𝑥𝐴) → (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)
2625ralrimiva 3132 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)
2713, 26jca 511 . . . . . 6 (𝜑 → (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol))
28 ffnfv 7109 . . . . . 6 (([,) ∘ 𝐹):𝐴⟶dom vol ↔ (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol))
2927, 28sylibr 234 . . . . 5 (𝜑 → ([,) ∘ 𝐹):𝐴⟶dom vol)
30 fco 6730 . . . . 5 ((vol:dom vol⟶(0[,]+∞) ∧ ([,) ∘ 𝐹):𝐴⟶dom vol) → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))
319, 29, 30syl2anc 584 . . . 4 (𝜑 → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))
32 coass 6254 . . . . . 6 ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹))
3332a1i 11 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹)))
3433feq1d 6690 . . . 4 (𝜑 → (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)))
3531, 34mpbird 257 . . 3 (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞))
3635ffnd 6707 . 2 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) Fn 𝐴)
3719, 21voliooico 46021 . . 3 ((𝜑𝑥𝐴) → (vol‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))) = (vol‘((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥)))))
385, 4fssd 6723 . . . . 5 (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
3938adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶(ℝ* × ℝ*))
4039, 15fvvolioof 46018 . . 3 ((𝜑𝑥𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))))
4139, 15fvvolicof 46020 . . 3 ((𝜑𝑥𝐴) → (((vol ∘ [,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥)))))
4237, 40, 413eqtr4d 2780 . 2 ((𝜑𝑥𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (((vol ∘ [,)) ∘ 𝐹)‘𝑥))
437, 36, 42eqfnfvd 7024 1 (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926  𝒫 cpw 4575   × cxp 5652  dom cdm 5654  ccom 5658   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  cr 11128  0cc0 11129  +∞cpnf 11266  *cxr 11268  (,)cioo 13362  [,)cico 13364  [,]cicc 13365  volcvol 25416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cmp 23325  df-ovol 25417  df-vol 25418
This theorem is referenced by:  ovolval5lem3  46683
  Copyright terms: Public domain W3C validator