| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > voliooicof | Structured version Visualization version GIF version | ||
| Description: The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| voliooicof.1 | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ)) |
| Ref | Expression |
|---|---|
| voliooicof | ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volioof 45958 | . . . . 5 ⊢ (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)) |
| 3 | rexpssxrxp 11195 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) |
| 5 | voliooicof.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ)) | |
| 6 | 2, 4, 5 | fcoss 45177 | . . 3 ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
| 7 | 6 | ffnd 6671 | . 2 ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) Fn 𝐴) |
| 8 | volf 25406 | . . . . . 6 ⊢ vol:dom vol⟶(0[,]+∞) | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → vol:dom vol⟶(0[,]+∞)) |
| 10 | icof 45186 | . . . . . . . . . 10 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | |
| 11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*) |
| 12 | 11, 4, 5 | fcoss 45177 | . . . . . . . 8 ⊢ (𝜑 → ([,) ∘ 𝐹):𝐴⟶𝒫 ℝ*) |
| 13 | 12 | ffnd 6671 | . . . . . . 7 ⊢ (𝜑 → ([,) ∘ 𝐹) Fn 𝐴) |
| 14 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶(ℝ × ℝ)) |
| 15 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 16 | 14, 15 | fvovco 45160 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (([,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))) |
| 17 | 5 | ffvelcdmda 7038 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (ℝ × ℝ)) |
| 18 | xp1st 7979 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘𝑥)) ∈ ℝ) | |
| 19 | 17, 18 | syl 17 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1st ‘(𝐹‘𝑥)) ∈ ℝ) |
| 20 | xp2nd 7980 | . . . . . . . . . . . 12 ⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ) | |
| 21 | 17, 20 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ) |
| 22 | 21 | rexrd 11200 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) |
| 23 | icombl 25441 | . . . . . . . . . 10 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) → ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))) ∈ dom vol) | |
| 24 | 19, 22, 23 | syl2anc 584 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))) ∈ dom vol) |
| 25 | 16, 24 | eqeltrd 2828 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) |
| 26 | 25 | ralrimiva 3125 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) |
| 27 | 13, 26 | jca 511 | . . . . . 6 ⊢ (𝜑 → (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)) |
| 28 | ffnfv 7073 | . . . . . 6 ⊢ (([,) ∘ 𝐹):𝐴⟶dom vol ↔ (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)) | |
| 29 | 27, 28 | sylibr 234 | . . . . 5 ⊢ (𝜑 → ([,) ∘ 𝐹):𝐴⟶dom vol) |
| 30 | fco 6694 | . . . . 5 ⊢ ((vol:dom vol⟶(0[,]+∞) ∧ ([,) ∘ 𝐹):𝐴⟶dom vol) → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)) | |
| 31 | 9, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)) |
| 32 | coass 6226 | . . . . . 6 ⊢ ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹)) | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹))) |
| 34 | 33 | feq1d 6652 | . . . 4 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))) |
| 35 | 31, 34 | mpbird 257 | . . 3 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
| 36 | 35 | ffnd 6671 | . 2 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) Fn 𝐴) |
| 37 | 19, 21 | voliooico 45963 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (vol‘((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥)))) = (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))))) |
| 38 | 5, 4 | fssd 6687 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
| 39 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
| 40 | 39, 15 | fvvolioof 45960 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥))))) |
| 41 | 39, 15 | fvvolicof 45962 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ [,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))))) |
| 42 | 37, 40, 41 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (((vol ∘ [,)) ∘ 𝐹)‘𝑥)) |
| 43 | 7, 36, 42 | eqfnfvd 6988 | 1 ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 𝒫 cpw 4559 × cxp 5629 dom cdm 5631 ∘ ccom 5635 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 ℝcr 11043 0cc0 11044 +∞cpnf 11181 ℝ*cxr 11183 (,)cioo 13282 [,)cico 13284 [,]cicc 13285 volcvol 25340 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-rest 17361 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-top 22757 df-topon 22774 df-bases 22809 df-cmp 23250 df-ovol 25341 df-vol 25342 |
| This theorem is referenced by: ovolval5lem3 46625 |
| Copyright terms: Public domain | W3C validator |