Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > voliooicof | Structured version Visualization version GIF version |
Description: The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
voliooicof.1 | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ)) |
Ref | Expression |
---|---|
voliooicof | ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | volioof 43864 | . . . . 5 ⊢ (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)) |
3 | rexpssxrxp 11121 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) |
5 | voliooicof.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ)) | |
6 | 2, 4, 5 | fcoss 43077 | . . 3 ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
7 | 6 | ffnd 6652 | . 2 ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) Fn 𝐴) |
8 | volf 24799 | . . . . . 6 ⊢ vol:dom vol⟶(0[,]+∞) | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → vol:dom vol⟶(0[,]+∞)) |
10 | icof 43086 | . . . . . . . . . 10 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*) |
12 | 11, 4, 5 | fcoss 43077 | . . . . . . . 8 ⊢ (𝜑 → ([,) ∘ 𝐹):𝐴⟶𝒫 ℝ*) |
13 | 12 | ffnd 6652 | . . . . . . 7 ⊢ (𝜑 → ([,) ∘ 𝐹) Fn 𝐴) |
14 | 5 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶(ℝ × ℝ)) |
15 | simpr 485 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
16 | 14, 15 | fvovco 43059 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (([,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))) |
17 | 5 | ffvelcdmda 7017 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (ℝ × ℝ)) |
18 | xp1st 7931 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘𝑥)) ∈ ℝ) | |
19 | 17, 18 | syl 17 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1st ‘(𝐹‘𝑥)) ∈ ℝ) |
20 | xp2nd 7932 | . . . . . . . . . . . 12 ⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ) | |
21 | 17, 20 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ) |
22 | 21 | rexrd 11126 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) |
23 | icombl 24834 | . . . . . . . . . 10 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) → ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))) ∈ dom vol) | |
24 | 19, 22, 23 | syl2anc 584 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))) ∈ dom vol) |
25 | 16, 24 | eqeltrd 2837 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) |
26 | 25 | ralrimiva 3139 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) |
27 | 13, 26 | jca 512 | . . . . . 6 ⊢ (𝜑 → (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)) |
28 | ffnfv 7048 | . . . . . 6 ⊢ (([,) ∘ 𝐹):𝐴⟶dom vol ↔ (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)) | |
29 | 27, 28 | sylibr 233 | . . . . 5 ⊢ (𝜑 → ([,) ∘ 𝐹):𝐴⟶dom vol) |
30 | fco 6675 | . . . . 5 ⊢ ((vol:dom vol⟶(0[,]+∞) ∧ ([,) ∘ 𝐹):𝐴⟶dom vol) → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)) | |
31 | 9, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)) |
32 | coass 6203 | . . . . . 6 ⊢ ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹)) | |
33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹))) |
34 | 33 | feq1d 6636 | . . . 4 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))) |
35 | 31, 34 | mpbird 256 | . . 3 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
36 | 35 | ffnd 6652 | . 2 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) Fn 𝐴) |
37 | 19, 21 | voliooico 43869 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (vol‘((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥)))) = (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))))) |
38 | 5, 4 | fssd 6669 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
39 | 38 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
40 | 39, 15 | fvvolioof 43866 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥))))) |
41 | 39, 15 | fvvolicof 43868 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ [,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))))) |
42 | 37, 40, 41 | 3eqtr4d 2786 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (((vol ∘ [,)) ∘ 𝐹)‘𝑥)) |
43 | 7, 36, 42 | eqfnfvd 6968 | 1 ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ⊆ wss 3898 𝒫 cpw 4547 × cxp 5618 dom cdm 5620 ∘ ccom 5624 Fn wfn 6474 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 1st c1st 7897 2nd c2nd 7898 ℝcr 10971 0cc0 10972 +∞cpnf 11107 ℝ*cxr 11109 (,)cioo 13180 [,)cico 13182 [,]cicc 13183 volcvol 24733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-er 8569 df-map 8688 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fi 9268 df-sup 9299 df-inf 9300 df-oi 9367 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-q 12790 df-rp 12832 df-xneg 12949 df-xadd 12950 df-xmul 12951 df-ioo 13184 df-ico 13186 df-icc 13187 df-fz 13341 df-fzo 13484 df-fl 13613 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-rlim 15297 df-sum 15497 df-rest 17230 df-topgen 17251 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-top 22149 df-topon 22166 df-bases 22202 df-cmp 22644 df-ovol 24734 df-vol 24735 |
This theorem is referenced by: ovolval5lem3 44529 |
Copyright terms: Public domain | W3C validator |