| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > voliooicof | Structured version Visualization version GIF version | ||
| Description: The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| voliooicof.1 | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ)) |
| Ref | Expression |
|---|---|
| voliooicof | ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | volioof 46025 | . . . . 5 ⊢ (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)) |
| 3 | rexpssxrxp 11152 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) |
| 5 | voliooicof.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ × ℝ)) | |
| 6 | 2, 4, 5 | fcoss 45247 | . . 3 ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
| 7 | 6 | ffnd 6647 | . 2 ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) Fn 𝐴) |
| 8 | volf 25452 | . . . . . 6 ⊢ vol:dom vol⟶(0[,]+∞) | |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → vol:dom vol⟶(0[,]+∞)) |
| 10 | icof 45256 | . . . . . . . . . 10 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | |
| 11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*) |
| 12 | 11, 4, 5 | fcoss 45247 | . . . . . . . 8 ⊢ (𝜑 → ([,) ∘ 𝐹):𝐴⟶𝒫 ℝ*) |
| 13 | 12 | ffnd 6647 | . . . . . . 7 ⊢ (𝜑 → ([,) ∘ 𝐹) Fn 𝐴) |
| 14 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶(ℝ × ℝ)) |
| 15 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 16 | 14, 15 | fvovco 45230 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (([,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥)))) |
| 17 | 5 | ffvelcdmda 7012 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ (ℝ × ℝ)) |
| 18 | xp1st 7948 | . . . . . . . . . . 11 ⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ) → (1st ‘(𝐹‘𝑥)) ∈ ℝ) | |
| 19 | 17, 18 | syl 17 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1st ‘(𝐹‘𝑥)) ∈ ℝ) |
| 20 | xp2nd 7949 | . . . . . . . . . . . 12 ⊢ ((𝐹‘𝑥) ∈ (ℝ × ℝ) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ) | |
| 21 | 17, 20 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ) |
| 22 | 21 | rexrd 11157 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) |
| 23 | icombl 25487 | . . . . . . . . . 10 ⊢ (((1st ‘(𝐹‘𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹‘𝑥)) ∈ ℝ*) → ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))) ∈ dom vol) | |
| 24 | 19, 22, 23 | syl2anc 584 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))) ∈ dom vol) |
| 25 | 16, 24 | eqeltrd 2831 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) |
| 26 | 25 | ralrimiva 3124 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol) |
| 27 | 13, 26 | jca 511 | . . . . . 6 ⊢ (𝜑 → (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)) |
| 28 | ffnfv 7047 | . . . . . 6 ⊢ (([,) ∘ 𝐹):𝐴⟶dom vol ↔ (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)) | |
| 29 | 27, 28 | sylibr 234 | . . . . 5 ⊢ (𝜑 → ([,) ∘ 𝐹):𝐴⟶dom vol) |
| 30 | fco 6670 | . . . . 5 ⊢ ((vol:dom vol⟶(0[,]+∞) ∧ ([,) ∘ 𝐹):𝐴⟶dom vol) → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)) | |
| 31 | 9, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)) |
| 32 | coass 6208 | . . . . . 6 ⊢ ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹)) | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹))) |
| 34 | 33 | feq1d 6628 | . . . 4 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))) |
| 35 | 31, 34 | mpbird 257 | . . 3 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞)) |
| 36 | 35 | ffnd 6647 | . 2 ⊢ (𝜑 → ((vol ∘ [,)) ∘ 𝐹) Fn 𝐴) |
| 37 | 19, 21 | voliooico 46030 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (vol‘((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥)))) = (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))))) |
| 38 | 5, 4 | fssd 6663 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
| 39 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
| 40 | 39, 15 | fvvolioof 46027 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹‘𝑥))(,)(2nd ‘(𝐹‘𝑥))))) |
| 41 | 39, 15 | fvvolicof 46029 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ [,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹‘𝑥))[,)(2nd ‘(𝐹‘𝑥))))) |
| 42 | 37, 40, 41 | 3eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (((vol ∘ [,)) ∘ 𝐹)‘𝑥)) |
| 43 | 7, 36, 42 | eqfnfvd 6962 | 1 ⊢ (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 𝒫 cpw 4545 × cxp 5609 dom cdm 5611 ∘ ccom 5615 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 ℝcr 11000 0cc0 11001 +∞cpnf 11138 ℝ*cxr 11140 (,)cioo 13240 [,)cico 13242 [,]cicc 13243 volcvol 25386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-ico 13246 df-icc 13247 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-sum 15589 df-rest 17321 df-topgen 17342 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-top 22804 df-topon 22821 df-bases 22856 df-cmp 23297 df-ovol 25387 df-vol 25388 |
| This theorem is referenced by: ovolval5lem3 46692 |
| Copyright terms: Public domain | W3C validator |