Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliooicof Structured version   Visualization version   GIF version

Theorem voliooicof 42288
Description: The Lebesgue measure of open intervals is the same as the Lebesgue measure of left-closed right-open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
voliooicof.1 (𝜑𝐹:𝐴⟶(ℝ × ℝ))
Assertion
Ref Expression
voliooicof (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹))

Proof of Theorem voliooicof
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 volioof 42279 . . . . 5 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
21a1i 11 . . . 4 (𝜑 → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
3 rexpssxrxp 10689 . . . . 5 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
43a1i 11 . . . 4 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
5 voliooicof.1 . . . 4 (𝜑𝐹:𝐴⟶(ℝ × ℝ))
62, 4, 5fcoss 41479 . . 3 (𝜑 → ((vol ∘ (,)) ∘ 𝐹):𝐴⟶(0[,]+∞))
76ffnd 6518 . 2 (𝜑 → ((vol ∘ (,)) ∘ 𝐹) Fn 𝐴)
8 volf 24133 . . . . . 6 vol:dom vol⟶(0[,]+∞)
98a1i 11 . . . . 5 (𝜑 → vol:dom vol⟶(0[,]+∞))
10 icof 41488 . . . . . . . . . 10 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
1110a1i 11 . . . . . . . . 9 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
1211, 4, 5fcoss 41479 . . . . . . . 8 (𝜑 → ([,) ∘ 𝐹):𝐴⟶𝒫 ℝ*)
1312ffnd 6518 . . . . . . 7 (𝜑 → ([,) ∘ 𝐹) Fn 𝐴)
145adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶(ℝ × ℝ))
15 simpr 487 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝑥𝐴)
1614, 15fvovco 41461 . . . . . . . . 9 ((𝜑𝑥𝐴) → (([,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))))
175ffvelrnda 6854 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ (ℝ × ℝ))
18 xp1st 7724 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑥)) ∈ ℝ)
1917, 18syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (1st ‘(𝐹𝑥)) ∈ ℝ)
20 xp2nd 7725 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑥)) ∈ ℝ)
2117, 20syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (2nd ‘(𝐹𝑥)) ∈ ℝ)
2221rexrd 10694 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
23 icombl 24168 . . . . . . . . . 10 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ*) → ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))) ∈ dom vol)
2419, 22, 23syl2anc 586 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥))) ∈ dom vol)
2516, 24eqeltrd 2916 . . . . . . . 8 ((𝜑𝑥𝐴) → (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)
2625ralrimiva 3185 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol)
2713, 26jca 514 . . . . . 6 (𝜑 → (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol))
28 ffnfv 6885 . . . . . 6 (([,) ∘ 𝐹):𝐴⟶dom vol ↔ (([,) ∘ 𝐹) Fn 𝐴 ∧ ∀𝑥𝐴 (([,) ∘ 𝐹)‘𝑥) ∈ dom vol))
2927, 28sylibr 236 . . . . 5 (𝜑 → ([,) ∘ 𝐹):𝐴⟶dom vol)
30 fco 6534 . . . . 5 ((vol:dom vol⟶(0[,]+∞) ∧ ([,) ∘ 𝐹):𝐴⟶dom vol) → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))
319, 29, 30syl2anc 586 . . . 4 (𝜑 → (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞))
32 coass 6121 . . . . . 6 ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹))
3332a1i 11 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (vol ∘ ([,) ∘ 𝐹)))
3433feq1d 6502 . . . 4 (𝜑 → (((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞) ↔ (vol ∘ ([,) ∘ 𝐹)):𝐴⟶(0[,]+∞)))
3531, 34mpbird 259 . . 3 (𝜑 → ((vol ∘ [,)) ∘ 𝐹):𝐴⟶(0[,]+∞))
3635ffnd 6518 . 2 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) Fn 𝐴)
3719, 21voliooico 42284 . . 3 ((𝜑𝑥𝐴) → (vol‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))) = (vol‘((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥)))))
385, 4fssd 6531 . . . . 5 (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
3938adantr 483 . . . 4 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶(ℝ* × ℝ*))
4039, 15fvvolioof 42281 . . 3 ((𝜑𝑥𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥)))))
4139, 15fvvolicof 42283 . . 3 ((𝜑𝑥𝐴) → (((vol ∘ [,)) ∘ 𝐹)‘𝑥) = (vol‘((1st ‘(𝐹𝑥))[,)(2nd ‘(𝐹𝑥)))))
4237, 40, 413eqtr4d 2869 . 2 ((𝜑𝑥𝐴) → (((vol ∘ (,)) ∘ 𝐹)‘𝑥) = (((vol ∘ [,)) ∘ 𝐹)‘𝑥))
437, 36, 42eqfnfvd 6808 1 (𝜑 → ((vol ∘ (,)) ∘ 𝐹) = ((vol ∘ [,)) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wral 3141  wss 3939  𝒫 cpw 4542   × cxp 5556  dom cdm 5558  ccom 5562   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  1st c1st 7690  2nd c2nd 7691  cr 10539  0cc0 10540  +∞cpnf 10675  *cxr 10677  (,)cioo 12741  [,)cico 12743  [,]cicc 12744  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-rest 16699  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-cmp 21998  df-ovol 24068  df-vol 24069
This theorem is referenced by:  ovolval5lem3  42943
  Copyright terms: Public domain W3C validator