Step | Hyp | Ref
| Expression |
1 | | fsneqrn.f |
. . . . . . 7
β’ (π β πΉ Fn π΅) |
2 | | dffn3 6730 |
. . . . . . 7
β’ (πΉ Fn π΅ β πΉ:π΅βΆran πΉ) |
3 | 1, 2 | sylib 217 |
. . . . . 6
β’ (π β πΉ:π΅βΆran πΉ) |
4 | | fsneqrn.a |
. . . . . . . 8
β’ (π β π΄ β π) |
5 | | snidg 4662 |
. . . . . . . 8
β’ (π΄ β π β π΄ β {π΄}) |
6 | 4, 5 | syl 17 |
. . . . . . 7
β’ (π β π΄ β {π΄}) |
7 | | fsneqrn.b |
. . . . . . . . 9
β’ π΅ = {π΄} |
8 | 7 | a1i 11 |
. . . . . . . 8
β’ (π β π΅ = {π΄}) |
9 | 8 | eqcomd 2738 |
. . . . . . 7
β’ (π β {π΄} = π΅) |
10 | 6, 9 | eleqtrd 2835 |
. . . . . 6
β’ (π β π΄ β π΅) |
11 | 3, 10 | ffvelcdmd 7087 |
. . . . 5
β’ (π β (πΉβπ΄) β ran πΉ) |
12 | 11 | adantr 481 |
. . . 4
β’ ((π β§ πΉ = πΊ) β (πΉβπ΄) β ran πΉ) |
13 | | simpr 485 |
. . . . 5
β’ ((π β§ πΉ = πΊ) β πΉ = πΊ) |
14 | 13 | rneqd 5937 |
. . . 4
β’ ((π β§ πΉ = πΊ) β ran πΉ = ran πΊ) |
15 | 12, 14 | eleqtrd 2835 |
. . 3
β’ ((π β§ πΉ = πΊ) β (πΉβπ΄) β ran πΊ) |
16 | 15 | ex 413 |
. 2
β’ (π β (πΉ = πΊ β (πΉβπ΄) β ran πΊ)) |
17 | | simpr 485 |
. . . . . 6
β’ ((π β§ (πΉβπ΄) β ran πΊ) β (πΉβπ΄) β ran πΊ) |
18 | | fsneqrn.g |
. . . . . . . . . 10
β’ (π β πΊ Fn π΅) |
19 | | dffn2 6719 |
. . . . . . . . . 10
β’ (πΊ Fn π΅ β πΊ:π΅βΆV) |
20 | 18, 19 | sylib 217 |
. . . . . . . . 9
β’ (π β πΊ:π΅βΆV) |
21 | 8 | feq2d 6703 |
. . . . . . . . 9
β’ (π β (πΊ:π΅βΆV β πΊ:{π΄}βΆV)) |
22 | 20, 21 | mpbid 231 |
. . . . . . . 8
β’ (π β πΊ:{π΄}βΆV) |
23 | 4, 22 | rnsnf 44182 |
. . . . . . 7
β’ (π β ran πΊ = {(πΊβπ΄)}) |
24 | 23 | adantr 481 |
. . . . . 6
β’ ((π β§ (πΉβπ΄) β ran πΊ) β ran πΊ = {(πΊβπ΄)}) |
25 | 17, 24 | eleqtrd 2835 |
. . . . 5
β’ ((π β§ (πΉβπ΄) β ran πΊ) β (πΉβπ΄) β {(πΊβπ΄)}) |
26 | | elsni 4645 |
. . . . 5
β’ ((πΉβπ΄) β {(πΊβπ΄)} β (πΉβπ΄) = (πΊβπ΄)) |
27 | 25, 26 | syl 17 |
. . . 4
β’ ((π β§ (πΉβπ΄) β ran πΊ) β (πΉβπ΄) = (πΊβπ΄)) |
28 | 4 | adantr 481 |
. . . . 5
β’ ((π β§ (πΉβπ΄) β ran πΊ) β π΄ β π) |
29 | 1 | adantr 481 |
. . . . 5
β’ ((π β§ (πΉβπ΄) β ran πΊ) β πΉ Fn π΅) |
30 | 18 | adantr 481 |
. . . . 5
β’ ((π β§ (πΉβπ΄) β ran πΊ) β πΊ Fn π΅) |
31 | 28, 7, 29, 30 | fsneq 44204 |
. . . 4
β’ ((π β§ (πΉβπ΄) β ran πΊ) β (πΉ = πΊ β (πΉβπ΄) = (πΊβπ΄))) |
32 | 27, 31 | mpbird 256 |
. . 3
β’ ((π β§ (πΉβπ΄) β ran πΊ) β πΉ = πΊ) |
33 | 32 | ex 413 |
. 2
β’ (π β ((πΉβπ΄) β ran πΊ β πΉ = πΊ)) |
34 | 16, 33 | impbid 211 |
1
β’ (π β (πΉ = πΊ β (πΉβπ΄) β ran πΊ)) |