Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsneqrn Structured version   Visualization version   GIF version

Theorem fsneqrn 44209
Description: Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsneqrn.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
fsneqrn.b 𝐡 = {𝐴}
fsneqrn.f (πœ‘ β†’ 𝐹 Fn 𝐡)
fsneqrn.g (πœ‘ β†’ 𝐺 Fn 𝐡)
Assertion
Ref Expression
fsneqrn (πœ‘ β†’ (𝐹 = 𝐺 ↔ (πΉβ€˜π΄) ∈ ran 𝐺))

Proof of Theorem fsneqrn
StepHypRef Expression
1 fsneqrn.f . . . . . . 7 (πœ‘ β†’ 𝐹 Fn 𝐡)
2 dffn3 6730 . . . . . . 7 (𝐹 Fn 𝐡 ↔ 𝐹:𝐡⟢ran 𝐹)
31, 2sylib 217 . . . . . 6 (πœ‘ β†’ 𝐹:𝐡⟢ran 𝐹)
4 fsneqrn.a . . . . . . . 8 (πœ‘ β†’ 𝐴 ∈ 𝑉)
5 snidg 4662 . . . . . . . 8 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ {𝐴})
64, 5syl 17 . . . . . . 7 (πœ‘ β†’ 𝐴 ∈ {𝐴})
7 fsneqrn.b . . . . . . . . 9 𝐡 = {𝐴}
87a1i 11 . . . . . . . 8 (πœ‘ β†’ 𝐡 = {𝐴})
98eqcomd 2738 . . . . . . 7 (πœ‘ β†’ {𝐴} = 𝐡)
106, 9eleqtrd 2835 . . . . . 6 (πœ‘ β†’ 𝐴 ∈ 𝐡)
113, 10ffvelcdmd 7087 . . . . 5 (πœ‘ β†’ (πΉβ€˜π΄) ∈ ran 𝐹)
1211adantr 481 . . . 4 ((πœ‘ ∧ 𝐹 = 𝐺) β†’ (πΉβ€˜π΄) ∈ ran 𝐹)
13 simpr 485 . . . . 5 ((πœ‘ ∧ 𝐹 = 𝐺) β†’ 𝐹 = 𝐺)
1413rneqd 5937 . . . 4 ((πœ‘ ∧ 𝐹 = 𝐺) β†’ ran 𝐹 = ran 𝐺)
1512, 14eleqtrd 2835 . . 3 ((πœ‘ ∧ 𝐹 = 𝐺) β†’ (πΉβ€˜π΄) ∈ ran 𝐺)
1615ex 413 . 2 (πœ‘ β†’ (𝐹 = 𝐺 β†’ (πΉβ€˜π΄) ∈ ran 𝐺))
17 simpr 485 . . . . . 6 ((πœ‘ ∧ (πΉβ€˜π΄) ∈ ran 𝐺) β†’ (πΉβ€˜π΄) ∈ ran 𝐺)
18 fsneqrn.g . . . . . . . . . 10 (πœ‘ β†’ 𝐺 Fn 𝐡)
19 dffn2 6719 . . . . . . . . . 10 (𝐺 Fn 𝐡 ↔ 𝐺:𝐡⟢V)
2018, 19sylib 217 . . . . . . . . 9 (πœ‘ β†’ 𝐺:𝐡⟢V)
218feq2d 6703 . . . . . . . . 9 (πœ‘ β†’ (𝐺:𝐡⟢V ↔ 𝐺:{𝐴}⟢V))
2220, 21mpbid 231 . . . . . . . 8 (πœ‘ β†’ 𝐺:{𝐴}⟢V)
234, 22rnsnf 44182 . . . . . . 7 (πœ‘ β†’ ran 𝐺 = {(πΊβ€˜π΄)})
2423adantr 481 . . . . . 6 ((πœ‘ ∧ (πΉβ€˜π΄) ∈ ran 𝐺) β†’ ran 𝐺 = {(πΊβ€˜π΄)})
2517, 24eleqtrd 2835 . . . . 5 ((πœ‘ ∧ (πΉβ€˜π΄) ∈ ran 𝐺) β†’ (πΉβ€˜π΄) ∈ {(πΊβ€˜π΄)})
26 elsni 4645 . . . . 5 ((πΉβ€˜π΄) ∈ {(πΊβ€˜π΄)} β†’ (πΉβ€˜π΄) = (πΊβ€˜π΄))
2725, 26syl 17 . . . 4 ((πœ‘ ∧ (πΉβ€˜π΄) ∈ ran 𝐺) β†’ (πΉβ€˜π΄) = (πΊβ€˜π΄))
284adantr 481 . . . . 5 ((πœ‘ ∧ (πΉβ€˜π΄) ∈ ran 𝐺) β†’ 𝐴 ∈ 𝑉)
291adantr 481 . . . . 5 ((πœ‘ ∧ (πΉβ€˜π΄) ∈ ran 𝐺) β†’ 𝐹 Fn 𝐡)
3018adantr 481 . . . . 5 ((πœ‘ ∧ (πΉβ€˜π΄) ∈ ran 𝐺) β†’ 𝐺 Fn 𝐡)
3128, 7, 29, 30fsneq 44204 . . . 4 ((πœ‘ ∧ (πΉβ€˜π΄) ∈ ran 𝐺) β†’ (𝐹 = 𝐺 ↔ (πΉβ€˜π΄) = (πΊβ€˜π΄)))
3227, 31mpbird 256 . . 3 ((πœ‘ ∧ (πΉβ€˜π΄) ∈ ran 𝐺) β†’ 𝐹 = 𝐺)
3332ex 413 . 2 (πœ‘ β†’ ((πΉβ€˜π΄) ∈ ran 𝐺 β†’ 𝐹 = 𝐺))
3416, 33impbid 211 1 (πœ‘ β†’ (𝐹 = 𝐺 ↔ (πΉβ€˜π΄) ∈ ran 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  {csn 4628  ran crn 5677   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by:  ssmapsn  44214
  Copyright terms: Public domain W3C validator