Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnorn | Structured version Visualization version GIF version |
Description: A Fermat number is a function value of the enumeration of the Fermat numbers. (Contributed by AV, 3-Aug-2021.) |
Ref | Expression |
---|---|
fmtnorn | ⊢ (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7370 | . . 3 ⊢ ((2↑(2↑𝑛)) + 1) ∈ V | |
2 | df-fmtno 45331 | . . 3 ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | |
3 | 1, 2 | fnmpti 6627 | . 2 ⊢ FermatNo Fn ℕ0 |
4 | fvelrnb 6886 | . 2 ⊢ (FermatNo Fn ℕ0 → (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹)) | |
5 | 3, 4 | ax-mp 5 | 1 ⊢ (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 ran crn 5621 Fn wfn 6474 ‘cfv 6479 (class class class)co 7337 1c1 10973 + caddc 10975 2c2 12129 ℕ0cn0 12334 ↑cexp 13883 FermatNocfmtno 45330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-iota 6431 df-fun 6481 df-fn 6482 df-fv 6487 df-ov 7340 df-fmtno 45331 |
This theorem is referenced by: prmdvdsfmtnof1lem2 45388 prmdvdsfmtnof 45389 prmdvdsfmtnof1 45390 |
Copyright terms: Public domain | W3C validator |