| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnorn | Structured version Visualization version GIF version | ||
| Description: A Fermat number is a function value of the enumeration of the Fermat numbers. (Contributed by AV, 3-Aug-2021.) |
| Ref | Expression |
|---|---|
| fmtnorn | ⊢ (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7438 | . . 3 ⊢ ((2↑(2↑𝑛)) + 1) ∈ V | |
| 2 | df-fmtno 47542 | . . 3 ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | |
| 3 | 1, 2 | fnmpti 6681 | . 2 ⊢ FermatNo Fn ℕ0 |
| 4 | fvelrnb 6939 | . 2 ⊢ (FermatNo Fn ℕ0 → (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹)) | |
| 5 | 3, 4 | ax-mp 5 | 1 ⊢ (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ran crn 5655 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 1c1 11130 + caddc 11132 2c2 12295 ℕ0cn0 12501 ↑cexp 14079 FermatNocfmtno 47541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-ov 7408 df-fmtno 47542 |
| This theorem is referenced by: prmdvdsfmtnof1lem2 47599 prmdvdsfmtnof 47600 prmdvdsfmtnof1 47601 |
| Copyright terms: Public domain | W3C validator |