Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorn Structured version   Visualization version   GIF version

Theorem fmtnorn 46664
Description: A Fermat number is a function value of the enumeration of the Fermat numbers. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
fmtnorn (𝐹 ∈ ran FermatNo ↔ βˆƒπ‘› ∈ β„•0 (FermatNoβ€˜π‘›) = 𝐹)
Distinct variable group:   𝑛,𝐹

Proof of Theorem fmtnorn
StepHypRef Expression
1 ovex 7445 . . 3 ((2↑(2↑𝑛)) + 1) ∈ V
2 df-fmtno 46658 . . 3 FermatNo = (𝑛 ∈ β„•0 ↦ ((2↑(2↑𝑛)) + 1))
31, 2fnmpti 6693 . 2 FermatNo Fn β„•0
4 fvelrnb 6952 . 2 (FermatNo Fn β„•0 β†’ (𝐹 ∈ ran FermatNo ↔ βˆƒπ‘› ∈ β„•0 (FermatNoβ€˜π‘›) = 𝐹))
53, 4ax-mp 5 1 (𝐹 ∈ ran FermatNo ↔ βˆƒπ‘› ∈ β„•0 (FermatNoβ€˜π‘›) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   = wceq 1540   ∈ wcel 2105  βˆƒwrex 3069  ran crn 5677   Fn wfn 6538  β€˜cfv 6543  (class class class)co 7412  1c1 11117   + caddc 11119  2c2 12274  β„•0cn0 12479  β†‘cexp 14034  FermatNocfmtno 46657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-ov 7415  df-fmtno 46658
This theorem is referenced by:  prmdvdsfmtnof1lem2  46715  prmdvdsfmtnof  46716  prmdvdsfmtnof1  46717
  Copyright terms: Public domain W3C validator