Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorn Structured version   Visualization version   GIF version

Theorem fmtnorn 47539
Description: A Fermat number is a function value of the enumeration of the Fermat numbers. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
fmtnorn (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹)
Distinct variable group:   𝑛,𝐹

Proof of Theorem fmtnorn
StepHypRef Expression
1 ovex 7423 . . 3 ((2↑(2↑𝑛)) + 1) ∈ V
2 df-fmtno 47533 . . 3 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
31, 2fnmpti 6664 . 2 FermatNo Fn ℕ0
4 fvelrnb 6924 . 2 (FermatNo Fn ℕ0 → (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹))
53, 4ax-mp 5 1 (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wrex 3054  ran crn 5642   Fn wfn 6509  cfv 6514  (class class class)co 7390  1c1 11076   + caddc 11078  2c2 12248  0cn0 12449  cexp 14033  FermatNocfmtno 47532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-ov 7393  df-fmtno 47533
This theorem is referenced by:  prmdvdsfmtnof1lem2  47590  prmdvdsfmtnof  47591  prmdvdsfmtnof1  47592
  Copyright terms: Public domain W3C validator