Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnof1 Structured version   Visualization version   GIF version

Theorem fmtnof1 45717
Description: The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
fmtnof1 FermatNo:ℕ01-1→ℕ

Proof of Theorem fmtnof1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fmtno 45710 . . 3 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
2 2nn 12226 . . . . . 6 2 ∈ ℕ
32a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 2 ∈ ℕ)
4 2nn0 12430 . . . . . . 7 2 ∈ ℕ0
54a1i 11 . . . . . 6 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
6 id 22 . . . . . 6 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
75, 6nn0expcld 14149 . . . . 5 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ0)
83, 7nnexpcld 14148 . . . 4 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ)
98peano2nnd 12170 . . 3 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) ∈ ℕ)
101, 9fmpti 7060 . 2 FermatNo:ℕ0⟶ℕ
11 fmtno 45711 . . . . 5 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) = ((2↑(2↑𝑛)) + 1))
12 fmtno 45711 . . . . 5 (𝑚 ∈ ℕ0 → (FermatNo‘𝑚) = ((2↑(2↑𝑚)) + 1))
1311, 12eqeqan12d 2750 . . . 4 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1)))
145, 7nn0expcld 14149 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ0)
1514nn0cnd 12475 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℂ)
1615adantr 481 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑(2↑𝑛)) ∈ ℂ)
174a1i 11 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → 2 ∈ ℕ0)
18 id 22 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℕ0)
1917, 18nn0expcld 14149 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℕ0)
2017, 19nn0expcld 14149 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (2↑(2↑𝑚)) ∈ ℕ0)
2120nn0cnd 12475 . . . . . . . 8 (𝑚 ∈ ℕ0 → (2↑(2↑𝑚)) ∈ ℂ)
2221adantl 482 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑(2↑𝑚)) ∈ ℂ)
23 1cnd 11150 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2416, 22, 23addcan2d 11359 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑(2↑𝑛)) = (2↑(2↑𝑚))))
25 2re 12227 . . . . . . . 8 2 ∈ ℝ
2625a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 2 ∈ ℝ)
277nn0zd 12525 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℤ)
2827adantr 481 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑𝑛) ∈ ℤ)
2919nn0zd 12525 . . . . . . . 8 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℤ)
3029adantl 482 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℤ)
31 1lt2 12324 . . . . . . . 8 1 < 2
3231a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 1 < 2)
33 expcan 14074 . . . . . . 7 (((2 ∈ ℝ ∧ (2↑𝑛) ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) ∧ 1 < 2) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚)))
3426, 28, 30, 32, 33syl31anc 1373 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚)))
3524, 34bitrd 278 . . . . 5 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑𝑛) = (2↑𝑚)))
36 nn0z 12524 . . . . . . 7 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3736adantr 481 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 𝑛 ∈ ℤ)
38 nn0z 12524 . . . . . . 7 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
3938adantl 482 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
40 expcan 14074 . . . . . . 7 (((2 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) ↔ 𝑛 = 𝑚))
4140biimpd 228 . . . . . 6 (((2 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚))
4226, 37, 39, 32, 41syl31anc 1373 . . . . 5 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚))
4335, 42sylbid 239 . . . 4 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) → 𝑛 = 𝑚))
4413, 43sylbid 239 . . 3 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚))
4544rgen2 3194 . 2 𝑛 ∈ ℕ0𝑚 ∈ ℕ0 ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)
46 dff13 7202 . 2 (FermatNo:ℕ01-1→ℕ ↔ (FermatNo:ℕ0⟶ℕ ∧ ∀𝑛 ∈ ℕ0𝑚 ∈ ℕ0 ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)))
4710, 45, 46mpbir2an 709 1 FermatNo:ℕ01-1→ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064   class class class wbr 5105  wf 6492  1-1wf1 6493  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cn 12153  2c2 12208  0cn0 12413  cz 12499  cexp 13967  FermatNocfmtno 45709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-fmtno 45710
This theorem is referenced by:  fmtnoinf  45718
  Copyright terms: Public domain W3C validator