| Step | Hyp | Ref
| Expression |
| 1 | | df-fmtno 47515 |
. . 3
⊢ FermatNo
= (𝑛 ∈
ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) |
| 2 | | 2nn 12339 |
. . . . . 6
⊢ 2 ∈
ℕ |
| 3 | 2 | a1i 11 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℕ) |
| 4 | | 2nn0 12543 |
. . . . . . 7
⊢ 2 ∈
ℕ0 |
| 5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℕ0) |
| 6 | | id 22 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℕ0) |
| 7 | 5, 6 | nn0expcld 14285 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℕ0) |
| 8 | 3, 7 | nnexpcld 14284 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (2↑(2↑𝑛))
∈ ℕ) |
| 9 | 8 | peano2nnd 12283 |
. . 3
⊢ (𝑛 ∈ ℕ0
→ ((2↑(2↑𝑛))
+ 1) ∈ ℕ) |
| 10 | 1, 9 | fmpti 7132 |
. 2
⊢
FermatNo:ℕ0⟶ℕ |
| 11 | | fmtno 47516 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ (FermatNo‘𝑛) =
((2↑(2↑𝑛)) +
1)) |
| 12 | | fmtno 47516 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
→ (FermatNo‘𝑚) =
((2↑(2↑𝑚)) +
1)) |
| 13 | 11, 12 | eqeqan12d 2751 |
. . . 4
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1))) |
| 14 | 5, 7 | nn0expcld 14285 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ (2↑(2↑𝑛))
∈ ℕ0) |
| 15 | 14 | nn0cnd 12589 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (2↑(2↑𝑛))
∈ ℂ) |
| 16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (2↑(2↑𝑛)) ∈ ℂ) |
| 17 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ 2 ∈ ℕ0) |
| 18 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℕ0) |
| 19 | 17, 18 | nn0expcld 14285 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (2↑𝑚) ∈
ℕ0) |
| 20 | 17, 19 | nn0expcld 14285 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (2↑(2↑𝑚))
∈ ℕ0) |
| 21 | 20 | nn0cnd 12589 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (2↑(2↑𝑚))
∈ ℂ) |
| 22 | 21 | adantl 481 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (2↑(2↑𝑚)) ∈ ℂ) |
| 23 | | 1cnd 11256 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → 1 ∈ ℂ) |
| 24 | 16, 22, 23 | addcan2d 11465 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑(2↑𝑛)) = (2↑(2↑𝑚)))) |
| 25 | | 2re 12340 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
| 26 | 25 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → 2 ∈ ℝ) |
| 27 | 7 | nn0zd 12639 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℤ) |
| 28 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (2↑𝑛) ∈ ℤ) |
| 29 | 19 | nn0zd 12639 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (2↑𝑚) ∈
ℤ) |
| 30 | 29 | adantl 481 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (2↑𝑚) ∈ ℤ) |
| 31 | | 1lt2 12437 |
. . . . . . . 8
⊢ 1 <
2 |
| 32 | 31 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → 1 < 2) |
| 33 | | expcan 14209 |
. . . . . . 7
⊢ (((2
∈ ℝ ∧ (2↑𝑛) ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) ∧ 1 <
2) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚))) |
| 34 | 26, 28, 30, 32, 33 | syl31anc 1375 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚))) |
| 35 | 24, 34 | bitrd 279 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑𝑛) = (2↑𝑚))) |
| 36 | | nn0z 12638 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
| 37 | 36 | adantr 480 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → 𝑛 ∈ ℤ) |
| 38 | | nn0z 12638 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℤ) |
| 39 | 38 | adantl 481 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → 𝑚 ∈ ℤ) |
| 40 | | expcan 14209 |
. . . . . . 7
⊢ (((2
∈ ℝ ∧ 𝑛
∈ ℤ ∧ 𝑚
∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) ↔ 𝑛 = 𝑚)) |
| 41 | 40 | biimpd 229 |
. . . . . 6
⊢ (((2
∈ ℝ ∧ 𝑛
∈ ℤ ∧ 𝑚
∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚)) |
| 42 | 26, 37, 39, 32, 41 | syl31anc 1375 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚)) |
| 43 | 35, 42 | sylbid 240 |
. . . 4
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) → 𝑛 = 𝑚)) |
| 44 | 13, 43 | sylbid 240 |
. . 3
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)) |
| 45 | 44 | rgen2 3199 |
. 2
⊢
∀𝑛 ∈
ℕ0 ∀𝑚 ∈ ℕ0
((FermatNo‘𝑛) =
(FermatNo‘𝑚) →
𝑛 = 𝑚) |
| 46 | | dff13 7275 |
. 2
⊢
(FermatNo:ℕ0–1-1→ℕ ↔
(FermatNo:ℕ0⟶ℕ ∧ ∀𝑛 ∈ ℕ0 ∀𝑚 ∈ ℕ0
((FermatNo‘𝑛) =
(FermatNo‘𝑚) →
𝑛 = 𝑚))) |
| 47 | 10, 45, 46 | mpbir2an 711 |
1
⊢
FermatNo:ℕ0–1-1→ℕ |