Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnof1 Structured version   Visualization version   GIF version

Theorem fmtnof1 47566
Description: The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
fmtnof1 FermatNo:ℕ01-1→ℕ

Proof of Theorem fmtnof1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fmtno 47559 . . 3 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
2 2nn 12193 . . . . . 6 2 ∈ ℕ
32a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 2 ∈ ℕ)
4 2nn0 12393 . . . . . . 7 2 ∈ ℕ0
54a1i 11 . . . . . 6 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
6 id 22 . . . . . 6 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
75, 6nn0expcld 14148 . . . . 5 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ0)
83, 7nnexpcld 14147 . . . 4 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ)
98peano2nnd 12137 . . 3 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) ∈ ℕ)
101, 9fmpti 7040 . 2 FermatNo:ℕ0⟶ℕ
11 fmtno 47560 . . . . 5 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) = ((2↑(2↑𝑛)) + 1))
12 fmtno 47560 . . . . 5 (𝑚 ∈ ℕ0 → (FermatNo‘𝑚) = ((2↑(2↑𝑚)) + 1))
1311, 12eqeqan12d 2745 . . . 4 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1)))
145, 7nn0expcld 14148 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ0)
1514nn0cnd 12439 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℂ)
1615adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑(2↑𝑛)) ∈ ℂ)
174a1i 11 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → 2 ∈ ℕ0)
18 id 22 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℕ0)
1917, 18nn0expcld 14148 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℕ0)
2017, 19nn0expcld 14148 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (2↑(2↑𝑚)) ∈ ℕ0)
2120nn0cnd 12439 . . . . . . . 8 (𝑚 ∈ ℕ0 → (2↑(2↑𝑚)) ∈ ℂ)
2221adantl 481 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑(2↑𝑚)) ∈ ℂ)
23 1cnd 11102 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2416, 22, 23addcan2d 11312 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑(2↑𝑛)) = (2↑(2↑𝑚))))
25 2re 12194 . . . . . . . 8 2 ∈ ℝ
2625a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 2 ∈ ℝ)
277nn0zd 12489 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℤ)
2827adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑𝑛) ∈ ℤ)
2919nn0zd 12489 . . . . . . . 8 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℤ)
3029adantl 481 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℤ)
31 1lt2 12286 . . . . . . . 8 1 < 2
3231a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 1 < 2)
33 expcan 14071 . . . . . . 7 (((2 ∈ ℝ ∧ (2↑𝑛) ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) ∧ 1 < 2) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚)))
3426, 28, 30, 32, 33syl31anc 1375 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚)))
3524, 34bitrd 279 . . . . 5 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑𝑛) = (2↑𝑚)))
36 nn0z 12488 . . . . . . 7 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3736adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 𝑛 ∈ ℤ)
38 nn0z 12488 . . . . . . 7 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
3938adantl 481 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
40 expcan 14071 . . . . . . 7 (((2 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) ↔ 𝑛 = 𝑚))
4140biimpd 229 . . . . . 6 (((2 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚))
4226, 37, 39, 32, 41syl31anc 1375 . . . . 5 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚))
4335, 42sylbid 240 . . . 4 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) → 𝑛 = 𝑚))
4413, 43sylbid 240 . . 3 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚))
4544rgen2 3172 . 2 𝑛 ∈ ℕ0𝑚 ∈ ℕ0 ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)
46 dff13 7183 . 2 (FermatNo:ℕ01-1→ℕ ↔ (FermatNo:ℕ0⟶ℕ ∧ ∀𝑛 ∈ ℕ0𝑚 ∈ ℕ0 ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)))
4710, 45, 46mpbir2an 711 1 FermatNo:ℕ01-1→ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5086  wf 6472  1-1wf1 6473  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  1c1 11002   + caddc 11004   < clt 11141  cn 12120  2c2 12175  0cn0 12376  cz 12463  cexp 13963  FermatNocfmtno 47558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-fmtno 47559
This theorem is referenced by:  fmtnoinf  47567
  Copyright terms: Public domain W3C validator