Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnof1 Structured version   Visualization version   GIF version

Theorem fmtnof1 44987
Description: The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
fmtnof1 FermatNo:ℕ01-1→ℕ

Proof of Theorem fmtnof1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fmtno 44980 . . 3 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
2 2nn 12046 . . . . . 6 2 ∈ ℕ
32a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 2 ∈ ℕ)
4 2nn0 12250 . . . . . . 7 2 ∈ ℕ0
54a1i 11 . . . . . 6 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
6 id 22 . . . . . 6 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
75, 6nn0expcld 13961 . . . . 5 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ0)
83, 7nnexpcld 13960 . . . 4 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ)
98peano2nnd 11990 . . 3 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) ∈ ℕ)
101, 9fmpti 6986 . 2 FermatNo:ℕ0⟶ℕ
11 fmtno 44981 . . . . 5 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) = ((2↑(2↑𝑛)) + 1))
12 fmtno 44981 . . . . 5 (𝑚 ∈ ℕ0 → (FermatNo‘𝑚) = ((2↑(2↑𝑚)) + 1))
1311, 12eqeqan12d 2752 . . . 4 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1)))
145, 7nn0expcld 13961 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ0)
1514nn0cnd 12295 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℂ)
1615adantr 481 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑(2↑𝑛)) ∈ ℂ)
174a1i 11 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → 2 ∈ ℕ0)
18 id 22 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℕ0)
1917, 18nn0expcld 13961 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℕ0)
2017, 19nn0expcld 13961 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (2↑(2↑𝑚)) ∈ ℕ0)
2120nn0cnd 12295 . . . . . . . 8 (𝑚 ∈ ℕ0 → (2↑(2↑𝑚)) ∈ ℂ)
2221adantl 482 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑(2↑𝑚)) ∈ ℂ)
23 1cnd 10970 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2416, 22, 23addcan2d 11179 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑(2↑𝑛)) = (2↑(2↑𝑚))))
25 2re 12047 . . . . . . . 8 2 ∈ ℝ
2625a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 2 ∈ ℝ)
277nn0zd 12424 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℤ)
2827adantr 481 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑𝑛) ∈ ℤ)
2919nn0zd 12424 . . . . . . . 8 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℤ)
3029adantl 482 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℤ)
31 1lt2 12144 . . . . . . . 8 1 < 2
3231a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 1 < 2)
33 expcan 13887 . . . . . . 7 (((2 ∈ ℝ ∧ (2↑𝑛) ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) ∧ 1 < 2) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚)))
3426, 28, 30, 32, 33syl31anc 1372 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚)))
3524, 34bitrd 278 . . . . 5 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑𝑛) = (2↑𝑚)))
36 nn0z 12343 . . . . . . 7 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3736adantr 481 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 𝑛 ∈ ℤ)
38 nn0z 12343 . . . . . . 7 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
3938adantl 482 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
40 expcan 13887 . . . . . . 7 (((2 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) ↔ 𝑛 = 𝑚))
4140biimpd 228 . . . . . 6 (((2 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚))
4226, 37, 39, 32, 41syl31anc 1372 . . . . 5 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚))
4335, 42sylbid 239 . . . 4 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) → 𝑛 = 𝑚))
4413, 43sylbid 239 . . 3 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚))
4544rgen2 3120 . 2 𝑛 ∈ ℕ0𝑚 ∈ ℕ0 ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)
46 dff13 7128 . 2 (FermatNo:ℕ01-1→ℕ ↔ (FermatNo:ℕ0⟶ℕ ∧ ∀𝑛 ∈ ℕ0𝑚 ∈ ℕ0 ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)))
4710, 45, 46mpbir2an 708 1 FermatNo:ℕ01-1→ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  1c1 10872   + caddc 10874   < clt 11009  cn 11973  2c2 12028  0cn0 12233  cz 12319  cexp 13782  FermatNocfmtno 44979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-fmtno 44980
This theorem is referenced by:  fmtnoinf  44988
  Copyright terms: Public domain W3C validator