Step | Hyp | Ref
| Expression |
1 | | df-fmtno 44653 |
. . 3
⊢ FermatNo
= (𝑛 ∈
ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) |
2 | | 2nn 11903 |
. . . . . 6
⊢ 2 ∈
ℕ |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℕ) |
4 | | 2nn0 12107 |
. . . . . . 7
⊢ 2 ∈
ℕ0 |
5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ 2 ∈ ℕ0) |
6 | | id 22 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℕ0) |
7 | 5, 6 | nn0expcld 13813 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℕ0) |
8 | 3, 7 | nnexpcld 13812 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ (2↑(2↑𝑛))
∈ ℕ) |
9 | 8 | peano2nnd 11847 |
. . 3
⊢ (𝑛 ∈ ℕ0
→ ((2↑(2↑𝑛))
+ 1) ∈ ℕ) |
10 | 1, 9 | fmpti 6929 |
. 2
⊢
FermatNo:ℕ0⟶ℕ |
11 | | fmtno 44654 |
. . . . 5
⊢ (𝑛 ∈ ℕ0
→ (FermatNo‘𝑛) =
((2↑(2↑𝑛)) +
1)) |
12 | | fmtno 44654 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
→ (FermatNo‘𝑚) =
((2↑(2↑𝑚)) +
1)) |
13 | 11, 12 | eqeqan12d 2751 |
. . . 4
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1))) |
14 | 5, 7 | nn0expcld 13813 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ (2↑(2↑𝑛))
∈ ℕ0) |
15 | 14 | nn0cnd 12152 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (2↑(2↑𝑛))
∈ ℂ) |
16 | 15 | adantr 484 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (2↑(2↑𝑛)) ∈ ℂ) |
17 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ 2 ∈ ℕ0) |
18 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℕ0) |
19 | 17, 18 | nn0expcld 13813 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ0
→ (2↑𝑚) ∈
ℕ0) |
20 | 17, 19 | nn0expcld 13813 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
→ (2↑(2↑𝑚))
∈ ℕ0) |
21 | 20 | nn0cnd 12152 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (2↑(2↑𝑚))
∈ ℂ) |
22 | 21 | adantl 485 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (2↑(2↑𝑚)) ∈ ℂ) |
23 | | 1cnd 10828 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → 1 ∈ ℂ) |
24 | 16, 22, 23 | addcan2d 11036 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑(2↑𝑛)) = (2↑(2↑𝑚)))) |
25 | | 2re 11904 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
26 | 25 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → 2 ∈ ℝ) |
27 | 7 | nn0zd 12280 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ (2↑𝑛) ∈
ℤ) |
28 | 27 | adantr 484 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (2↑𝑛) ∈ ℤ) |
29 | 19 | nn0zd 12280 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
→ (2↑𝑚) ∈
ℤ) |
30 | 29 | adantl 485 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (2↑𝑚) ∈ ℤ) |
31 | | 1lt2 12001 |
. . . . . . . 8
⊢ 1 <
2 |
32 | 31 | a1i 11 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → 1 < 2) |
33 | | expcan 13739 |
. . . . . . 7
⊢ (((2
∈ ℝ ∧ (2↑𝑛) ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) ∧ 1 <
2) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚))) |
34 | 26, 28, 30, 32, 33 | syl31anc 1375 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚))) |
35 | 24, 34 | bitrd 282 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑𝑛) = (2↑𝑚))) |
36 | | nn0z 12200 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
37 | 36 | adantr 484 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → 𝑛 ∈ ℤ) |
38 | | nn0z 12200 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℤ) |
39 | 38 | adantl 485 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → 𝑚 ∈ ℤ) |
40 | | expcan 13739 |
. . . . . . 7
⊢ (((2
∈ ℝ ∧ 𝑛
∈ ℤ ∧ 𝑚
∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) ↔ 𝑛 = 𝑚)) |
41 | 40 | biimpd 232 |
. . . . . 6
⊢ (((2
∈ ℝ ∧ 𝑛
∈ ℤ ∧ 𝑚
∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚)) |
42 | 26, 37, 39, 32, 41 | syl31anc 1375 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚)) |
43 | 35, 42 | sylbid 243 |
. . . 4
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) → 𝑛 = 𝑚)) |
44 | 13, 43 | sylbid 243 |
. . 3
⊢ ((𝑛 ∈ ℕ0
∧ 𝑚 ∈
ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)) |
45 | 44 | rgen2 3124 |
. 2
⊢
∀𝑛 ∈
ℕ0 ∀𝑚 ∈ ℕ0
((FermatNo‘𝑛) =
(FermatNo‘𝑚) →
𝑛 = 𝑚) |
46 | | dff13 7067 |
. 2
⊢
(FermatNo:ℕ0–1-1→ℕ ↔
(FermatNo:ℕ0⟶ℕ ∧ ∀𝑛 ∈ ℕ0 ∀𝑚 ∈ ℕ0
((FermatNo‘𝑛) =
(FermatNo‘𝑚) →
𝑛 = 𝑚))) |
47 | 10, 45, 46 | mpbir2an 711 |
1
⊢
FermatNo:ℕ0–1-1→ℕ |