Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnof1 Structured version   Visualization version   GIF version

Theorem fmtnof1 47509
Description: The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
fmtnof1 FermatNo:ℕ01-1→ℕ

Proof of Theorem fmtnof1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fmtno 47502 . . 3 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
2 2nn 12235 . . . . . 6 2 ∈ ℕ
32a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 2 ∈ ℕ)
4 2nn0 12435 . . . . . . 7 2 ∈ ℕ0
54a1i 11 . . . . . 6 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
6 id 22 . . . . . 6 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
75, 6nn0expcld 14187 . . . . 5 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ0)
83, 7nnexpcld 14186 . . . 4 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ)
98peano2nnd 12179 . . 3 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) ∈ ℕ)
101, 9fmpti 7066 . 2 FermatNo:ℕ0⟶ℕ
11 fmtno 47503 . . . . 5 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) = ((2↑(2↑𝑛)) + 1))
12 fmtno 47503 . . . . 5 (𝑚 ∈ ℕ0 → (FermatNo‘𝑚) = ((2↑(2↑𝑚)) + 1))
1311, 12eqeqan12d 2743 . . . 4 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1)))
145, 7nn0expcld 14187 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ0)
1514nn0cnd 12481 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℂ)
1615adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑(2↑𝑛)) ∈ ℂ)
174a1i 11 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → 2 ∈ ℕ0)
18 id 22 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℕ0)
1917, 18nn0expcld 14187 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℕ0)
2017, 19nn0expcld 14187 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (2↑(2↑𝑚)) ∈ ℕ0)
2120nn0cnd 12481 . . . . . . . 8 (𝑚 ∈ ℕ0 → (2↑(2↑𝑚)) ∈ ℂ)
2221adantl 481 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑(2↑𝑚)) ∈ ℂ)
23 1cnd 11145 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2416, 22, 23addcan2d 11354 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑(2↑𝑛)) = (2↑(2↑𝑚))))
25 2re 12236 . . . . . . . 8 2 ∈ ℝ
2625a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 2 ∈ ℝ)
277nn0zd 12531 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℤ)
2827adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑𝑛) ∈ ℤ)
2919nn0zd 12531 . . . . . . . 8 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℤ)
3029adantl 481 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℤ)
31 1lt2 12328 . . . . . . . 8 1 < 2
3231a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 1 < 2)
33 expcan 14110 . . . . . . 7 (((2 ∈ ℝ ∧ (2↑𝑛) ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) ∧ 1 < 2) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚)))
3426, 28, 30, 32, 33syl31anc 1375 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚)))
3524, 34bitrd 279 . . . . 5 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑𝑛) = (2↑𝑚)))
36 nn0z 12530 . . . . . . 7 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3736adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 𝑛 ∈ ℤ)
38 nn0z 12530 . . . . . . 7 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
3938adantl 481 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
40 expcan 14110 . . . . . . 7 (((2 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) ↔ 𝑛 = 𝑚))
4140biimpd 229 . . . . . 6 (((2 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚))
4226, 37, 39, 32, 41syl31anc 1375 . . . . 5 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚))
4335, 42sylbid 240 . . . 4 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) → 𝑛 = 𝑚))
4413, 43sylbid 240 . . 3 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚))
4544rgen2 3175 . 2 𝑛 ∈ ℕ0𝑚 ∈ ℕ0 ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)
46 dff13 7211 . 2 (FermatNo:ℕ01-1→ℕ ↔ (FermatNo:ℕ0⟶ℕ ∧ ∀𝑛 ∈ ℕ0𝑚 ∈ ℕ0 ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)))
4710, 45, 46mpbir2an 711 1 FermatNo:ℕ01-1→ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  wf 6495  1-1wf1 6496  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  1c1 11045   + caddc 11047   < clt 11184  cn 12162  2c2 12217  0cn0 12418  cz 12505  cexp 14002  FermatNocfmtno 47501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-fmtno 47502
This theorem is referenced by:  fmtnoinf  47510
  Copyright terms: Public domain W3C validator