Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnof1 Structured version   Visualization version   GIF version

Theorem fmtnof1 47540
Description: The enumeration of the Fermat numbers is a one-one function into the positive integers. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
fmtnof1 FermatNo:ℕ01-1→ℕ

Proof of Theorem fmtnof1
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fmtno 47533 . . 3 FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
2 2nn 12266 . . . . . 6 2 ∈ ℕ
32a1i 11 . . . . 5 (𝑛 ∈ ℕ0 → 2 ∈ ℕ)
4 2nn0 12466 . . . . . . 7 2 ∈ ℕ0
54a1i 11 . . . . . 6 (𝑛 ∈ ℕ0 → 2 ∈ ℕ0)
6 id 22 . . . . . 6 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
75, 6nn0expcld 14218 . . . . 5 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℕ0)
83, 7nnexpcld 14217 . . . 4 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ)
98peano2nnd 12210 . . 3 (𝑛 ∈ ℕ0 → ((2↑(2↑𝑛)) + 1) ∈ ℕ)
101, 9fmpti 7087 . 2 FermatNo:ℕ0⟶ℕ
11 fmtno 47534 . . . . 5 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) = ((2↑(2↑𝑛)) + 1))
12 fmtno 47534 . . . . 5 (𝑚 ∈ ℕ0 → (FermatNo‘𝑚) = ((2↑(2↑𝑚)) + 1))
1311, 12eqeqan12d 2744 . . . 4 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1)))
145, 7nn0expcld 14218 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℕ0)
1514nn0cnd 12512 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑(2↑𝑛)) ∈ ℂ)
1615adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑(2↑𝑛)) ∈ ℂ)
174a1i 11 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → 2 ∈ ℕ0)
18 id 22 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℕ0)
1917, 18nn0expcld 14218 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℕ0)
2017, 19nn0expcld 14218 . . . . . . . . 9 (𝑚 ∈ ℕ0 → (2↑(2↑𝑚)) ∈ ℕ0)
2120nn0cnd 12512 . . . . . . . 8 (𝑚 ∈ ℕ0 → (2↑(2↑𝑚)) ∈ ℂ)
2221adantl 481 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑(2↑𝑚)) ∈ ℂ)
23 1cnd 11176 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 1 ∈ ℂ)
2416, 22, 23addcan2d 11385 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑(2↑𝑛)) = (2↑(2↑𝑚))))
25 2re 12267 . . . . . . . 8 2 ∈ ℝ
2625a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 2 ∈ ℝ)
277nn0zd 12562 . . . . . . . 8 (𝑛 ∈ ℕ0 → (2↑𝑛) ∈ ℤ)
2827adantr 480 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑𝑛) ∈ ℤ)
2919nn0zd 12562 . . . . . . . 8 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℤ)
3029adantl 481 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℤ)
31 1lt2 12359 . . . . . . . 8 1 < 2
3231a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 1 < 2)
33 expcan 14141 . . . . . . 7 (((2 ∈ ℝ ∧ (2↑𝑛) ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) ∧ 1 < 2) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚)))
3426, 28, 30, 32, 33syl31anc 1375 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((2↑(2↑𝑛)) = (2↑(2↑𝑚)) ↔ (2↑𝑛) = (2↑𝑚)))
3524, 34bitrd 279 . . . . 5 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) ↔ (2↑𝑛) = (2↑𝑚)))
36 nn0z 12561 . . . . . . 7 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
3736adantr 480 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 𝑛 ∈ ℤ)
38 nn0z 12561 . . . . . . 7 (𝑚 ∈ ℕ0𝑚 ∈ ℤ)
3938adantl 481 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → 𝑚 ∈ ℤ)
40 expcan 14141 . . . . . . 7 (((2 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) ↔ 𝑛 = 𝑚))
4140biimpd 229 . . . . . 6 (((2 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ) ∧ 1 < 2) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚))
4226, 37, 39, 32, 41syl31anc 1375 . . . . 5 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((2↑𝑛) = (2↑𝑚) → 𝑛 = 𝑚))
4335, 42sylbid 240 . . . 4 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑚)) + 1) → 𝑛 = 𝑚))
4413, 43sylbid 240 . . 3 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚))
4544rgen2 3178 . 2 𝑛 ∈ ℕ0𝑚 ∈ ℕ0 ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)
46 dff13 7232 . 2 (FermatNo:ℕ01-1→ℕ ↔ (FermatNo:ℕ0⟶ℕ ∧ ∀𝑛 ∈ ℕ0𝑚 ∈ ℕ0 ((FermatNo‘𝑛) = (FermatNo‘𝑚) → 𝑛 = 𝑚)))
4710, 45, 46mpbir2an 711 1 FermatNo:ℕ01-1→ℕ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cn 12193  2c2 12248  0cn0 12449  cz 12536  cexp 14033  FermatNocfmtno 47532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-fmtno 47533
This theorem is referenced by:  fmtnoinf  47541
  Copyright terms: Public domain W3C validator