| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoodd | Structured version Visualization version GIF version | ||
| Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtnoodd | ⊢ (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12313 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℕ) |
| 3 | id 22 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 4 | 2, 3 | nnexpcld 14263 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ) |
| 5 | nnm1nn0 12542 | . . . . . 6 ⊢ ((2↑𝑁) ∈ ℕ → ((2↑𝑁) − 1) ∈ ℕ0) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℕ0) |
| 7 | 2, 6 | nnexpcld 14263 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℕ) |
| 8 | 7 | nnzd 12615 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℤ) |
| 9 | oveq2 7413 | . . . . 5 ⊢ (𝑘 = (2↑((2↑𝑁) − 1)) → (2 · 𝑘) = (2 · (2↑((2↑𝑁) − 1)))) | |
| 10 | 9 | oveq1d 7420 | . . . 4 ⊢ (𝑘 = (2↑((2↑𝑁) − 1)) → ((2 · 𝑘) + 1) = ((2 · (2↑((2↑𝑁) − 1))) + 1)) |
| 11 | fmtno 47543 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
| 12 | 10, 11 | eqeqan12rd 2750 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 = (2↑((2↑𝑁) − 1))) → (((2 · 𝑘) + 1) = (FermatNo‘𝑁) ↔ ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1))) |
| 13 | 2cnd 12318 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) | |
| 14 | 7 | nncnd 12256 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℂ) |
| 15 | 13, 14 | mulcomd 11256 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = ((2↑((2↑𝑁) − 1)) · 2)) |
| 16 | expm1t 14108 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ) → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2)) | |
| 17 | 13, 4, 16 | syl2anc 584 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2)) |
| 18 | 15, 17 | eqtr4d 2773 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = (2↑(2↑𝑁))) |
| 19 | 18 | oveq1d 7420 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1)) |
| 20 | 8, 12, 19 | rspcedvd 3603 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)) |
| 21 | fmtnonn 47545 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ) | |
| 22 | 21 | nnzd 12615 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ) |
| 23 | odd2np1 16360 | . . 3 ⊢ ((FermatNo‘𝑁) ∈ ℤ → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))) | |
| 24 | 22, 23 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))) |
| 25 | 20, 24 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 · cmul 11134 − cmin 11466 ℕcn 12240 2c2 12295 ℕ0cn0 12501 ℤcz 12588 ↑cexp 14079 ∥ cdvds 16272 FermatNocfmtno 47541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-seq 14020 df-exp 14080 df-dvds 16273 df-fmtno 47542 |
| This theorem is referenced by: goldbachthlem2 47560 fmtnoprmfac1 47579 fmtnoprmfac2 47581 |
| Copyright terms: Public domain | W3C validator |