![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoodd | Structured version Visualization version GIF version |
Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.) |
Ref | Expression |
---|---|
fmtnoodd | ⊢ (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12337 | . . . . . 6 ⊢ 2 ∈ ℕ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℕ) |
3 | id 22 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | nnexpcld 14262 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ) |
5 | nnm1nn0 12565 | . . . . . 6 ⊢ ((2↑𝑁) ∈ ℕ → ((2↑𝑁) − 1) ∈ ℕ0) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℕ0) |
7 | 2, 6 | nnexpcld 14262 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℕ) |
8 | 7 | nnzd 12637 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℤ) |
9 | oveq2 7432 | . . . . 5 ⊢ (𝑘 = (2↑((2↑𝑁) − 1)) → (2 · 𝑘) = (2 · (2↑((2↑𝑁) − 1)))) | |
10 | 9 | oveq1d 7439 | . . . 4 ⊢ (𝑘 = (2↑((2↑𝑁) − 1)) → ((2 · 𝑘) + 1) = ((2 · (2↑((2↑𝑁) − 1))) + 1)) |
11 | fmtno 47101 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
12 | 10, 11 | eqeqan12rd 2741 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 = (2↑((2↑𝑁) − 1))) → (((2 · 𝑘) + 1) = (FermatNo‘𝑁) ↔ ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1))) |
13 | 2cnd 12342 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) | |
14 | 7 | nncnd 12280 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℂ) |
15 | 13, 14 | mulcomd 11285 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = ((2↑((2↑𝑁) − 1)) · 2)) |
16 | expm1t 14110 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ) → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2)) | |
17 | 13, 4, 16 | syl2anc 582 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2)) |
18 | 15, 17 | eqtr4d 2769 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = (2↑(2↑𝑁))) |
19 | 18 | oveq1d 7439 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1)) |
20 | 8, 12, 19 | rspcedvd 3610 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)) |
21 | fmtnonn 47103 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ) | |
22 | 21 | nnzd 12637 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ) |
23 | odd2np1 16343 | . . 3 ⊢ ((FermatNo‘𝑁) ∈ ℤ → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))) |
25 | 20, 24 | mpbird 256 | 1 ⊢ (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 1c1 11159 + caddc 11161 · cmul 11163 − cmin 11494 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ℤcz 12610 ↑cexp 14081 ∥ cdvds 16256 FermatNocfmtno 47099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-seq 14022 df-exp 14082 df-dvds 16257 df-fmtno 47100 |
This theorem is referenced by: goldbachthlem2 47118 fmtnoprmfac1 47137 fmtnoprmfac2 47139 |
Copyright terms: Public domain | W3C validator |