Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoodd Structured version   Visualization version   GIF version

Theorem fmtnoodd 43688
Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoodd (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))

Proof of Theorem fmtnoodd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn 11704 . . . . . 6 2 ∈ ℕ
21a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 2 ∈ ℕ)
3 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
42, 3nnexpcld 13600 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ)
5 nnm1nn0 11932 . . . . . 6 ((2↑𝑁) ∈ ℕ → ((2↑𝑁) − 1) ∈ ℕ0)
64, 5syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℕ0)
72, 6nnexpcld 13600 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℕ)
87nnzd 12080 . . 3 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℤ)
9 oveq2 7158 . . . . 5 (𝑘 = (2↑((2↑𝑁) − 1)) → (2 · 𝑘) = (2 · (2↑((2↑𝑁) − 1))))
109oveq1d 7165 . . . 4 (𝑘 = (2↑((2↑𝑁) − 1)) → ((2 · 𝑘) + 1) = ((2 · (2↑((2↑𝑁) − 1))) + 1))
11 fmtno 43684 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
1210, 11eqeqan12rd 2840 . . 3 ((𝑁 ∈ ℕ0𝑘 = (2↑((2↑𝑁) − 1))) → (((2 · 𝑘) + 1) = (FermatNo‘𝑁) ↔ ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1)))
13 2cnd 11709 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
147nncnd 11648 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℂ)
1513, 14mulcomd 10656 . . . . 5 (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = ((2↑((2↑𝑁) − 1)) · 2))
16 expm1t 13451 . . . . . 6 ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ) → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2))
1713, 4, 16syl2anc 586 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2))
1815, 17eqtr4d 2859 . . . 4 (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = (2↑(2↑𝑁)))
1918oveq1d 7165 . . 3 (𝑁 ∈ ℕ0 → ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1))
208, 12, 19rspcedvd 3626 . 2 (𝑁 ∈ ℕ0 → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))
21 fmtnonn 43686 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
2221nnzd 12080 . . 3 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
23 odd2np1 15684 . . 3 ((FermatNo‘𝑁) ∈ ℤ → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)))
2422, 23syl 17 . 2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)))
2520, 24mpbird 259 1 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208   = wceq 1533  wcel 2110  wrex 3139   class class class wbr 5059  cfv 6350  (class class class)co 7150  cc 10529  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864  cn 11632  2c2 11686  0cn0 11891  cz 11975  cexp 13423  cdvds 15601  FermatNocfmtno 43682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-dvds 15602  df-fmtno 43683
This theorem is referenced by:  goldbachthlem2  43701  fmtnoprmfac1  43720  fmtnoprmfac2  43722
  Copyright terms: Public domain W3C validator