Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoodd Structured version   Visualization version   GIF version

Theorem fmtnoodd 47457
Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoodd (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))

Proof of Theorem fmtnoodd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn 12336 . . . . . 6 2 ∈ ℕ
21a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 2 ∈ ℕ)
3 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
42, 3nnexpcld 14280 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ)
5 nnm1nn0 12564 . . . . . 6 ((2↑𝑁) ∈ ℕ → ((2↑𝑁) − 1) ∈ ℕ0)
64, 5syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℕ0)
72, 6nnexpcld 14280 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℕ)
87nnzd 12637 . . 3 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℤ)
9 oveq2 7438 . . . . 5 (𝑘 = (2↑((2↑𝑁) − 1)) → (2 · 𝑘) = (2 · (2↑((2↑𝑁) − 1))))
109oveq1d 7445 . . . 4 (𝑘 = (2↑((2↑𝑁) − 1)) → ((2 · 𝑘) + 1) = ((2 · (2↑((2↑𝑁) − 1))) + 1))
11 fmtno 47453 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
1210, 11eqeqan12rd 2749 . . 3 ((𝑁 ∈ ℕ0𝑘 = (2↑((2↑𝑁) − 1))) → (((2 · 𝑘) + 1) = (FermatNo‘𝑁) ↔ ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1)))
13 2cnd 12341 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
147nncnd 12279 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℂ)
1513, 14mulcomd 11279 . . . . 5 (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = ((2↑((2↑𝑁) − 1)) · 2))
16 expm1t 14127 . . . . . 6 ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ) → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2))
1713, 4, 16syl2anc 584 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2))
1815, 17eqtr4d 2777 . . . 4 (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = (2↑(2↑𝑁)))
1918oveq1d 7445 . . 3 (𝑁 ∈ ℕ0 → ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1))
208, 12, 19rspcedvd 3623 . 2 (𝑁 ∈ ℕ0 → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))
21 fmtnonn 47455 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
2221nnzd 12637 . . 3 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
23 odd2np1 16374 . . 3 ((FermatNo‘𝑁) ∈ ℤ → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)))
2422, 23syl 17 . 2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)))
2520, 24mpbird 257 1 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1536  wcel 2105  wrex 3067   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489  cn 12263  2c2 12318  0cn0 12523  cz 12610  cexp 14098  cdvds 16286  FermatNocfmtno 47451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-dvds 16287  df-fmtno 47452
This theorem is referenced by:  goldbachthlem2  47470  fmtnoprmfac1  47489  fmtnoprmfac2  47491
  Copyright terms: Public domain W3C validator