Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoodd Structured version   Visualization version   GIF version

Theorem fmtnoodd 47517
Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoodd (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))

Proof of Theorem fmtnoodd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn 12201 . . . . . 6 2 ∈ ℕ
21a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 2 ∈ ℕ)
3 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
42, 3nnexpcld 14152 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ)
5 nnm1nn0 12425 . . . . . 6 ((2↑𝑁) ∈ ℕ → ((2↑𝑁) − 1) ∈ ℕ0)
64, 5syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℕ0)
72, 6nnexpcld 14152 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℕ)
87nnzd 12498 . . 3 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℤ)
9 oveq2 7357 . . . . 5 (𝑘 = (2↑((2↑𝑁) − 1)) → (2 · 𝑘) = (2 · (2↑((2↑𝑁) − 1))))
109oveq1d 7364 . . . 4 (𝑘 = (2↑((2↑𝑁) − 1)) → ((2 · 𝑘) + 1) = ((2 · (2↑((2↑𝑁) − 1))) + 1))
11 fmtno 47513 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
1210, 11eqeqan12rd 2744 . . 3 ((𝑁 ∈ ℕ0𝑘 = (2↑((2↑𝑁) − 1))) → (((2 · 𝑘) + 1) = (FermatNo‘𝑁) ↔ ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1)))
13 2cnd 12206 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
147nncnd 12144 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℂ)
1513, 14mulcomd 11136 . . . . 5 (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = ((2↑((2↑𝑁) − 1)) · 2))
16 expm1t 13997 . . . . . 6 ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ) → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2))
1713, 4, 16syl2anc 584 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2))
1815, 17eqtr4d 2767 . . . 4 (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = (2↑(2↑𝑁)))
1918oveq1d 7364 . . 3 (𝑁 ∈ ℕ0 → ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1))
208, 12, 19rspcedvd 3579 . 2 (𝑁 ∈ ℕ0 → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))
21 fmtnonn 47515 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
2221nnzd 12498 . . 3 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
23 odd2np1 16252 . . 3 ((FermatNo‘𝑁) ∈ ℤ → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)))
2422, 23syl 17 . 2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)))
2520, 24mpbird 257 1 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  cn 12128  2c2 12183  0cn0 12384  cz 12471  cexp 13968  cdvds 16163  FermatNocfmtno 47511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-dvds 16164  df-fmtno 47512
This theorem is referenced by:  goldbachthlem2  47530  fmtnoprmfac1  47549  fmtnoprmfac2  47551
  Copyright terms: Public domain W3C validator