Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoodd Structured version   Visualization version   GIF version

Theorem fmtnoodd 47520
Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoodd (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))

Proof of Theorem fmtnoodd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn 12339 . . . . . 6 2 ∈ ℕ
21a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 2 ∈ ℕ)
3 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
42, 3nnexpcld 14284 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ)
5 nnm1nn0 12567 . . . . . 6 ((2↑𝑁) ∈ ℕ → ((2↑𝑁) − 1) ∈ ℕ0)
64, 5syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℕ0)
72, 6nnexpcld 14284 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℕ)
87nnzd 12640 . . 3 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℤ)
9 oveq2 7439 . . . . 5 (𝑘 = (2↑((2↑𝑁) − 1)) → (2 · 𝑘) = (2 · (2↑((2↑𝑁) − 1))))
109oveq1d 7446 . . . 4 (𝑘 = (2↑((2↑𝑁) − 1)) → ((2 · 𝑘) + 1) = ((2 · (2↑((2↑𝑁) − 1))) + 1))
11 fmtno 47516 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
1210, 11eqeqan12rd 2752 . . 3 ((𝑁 ∈ ℕ0𝑘 = (2↑((2↑𝑁) − 1))) → (((2 · 𝑘) + 1) = (FermatNo‘𝑁) ↔ ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1)))
13 2cnd 12344 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
147nncnd 12282 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℂ)
1513, 14mulcomd 11282 . . . . 5 (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = ((2↑((2↑𝑁) − 1)) · 2))
16 expm1t 14131 . . . . . 6 ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ) → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2))
1713, 4, 16syl2anc 584 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2))
1815, 17eqtr4d 2780 . . . 4 (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = (2↑(2↑𝑁)))
1918oveq1d 7446 . . 3 (𝑁 ∈ ℕ0 → ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1))
208, 12, 19rspcedvd 3624 . 2 (𝑁 ∈ ℕ0 → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))
21 fmtnonn 47518 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
2221nnzd 12640 . . 3 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
23 odd2np1 16378 . . 3 ((FermatNo‘𝑁) ∈ ℤ → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)))
2422, 23syl 17 . 2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)))
2520, 24mpbird 257 1 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2108  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  cn 12266  2c2 12321  0cn0 12526  cz 12613  cexp 14102  cdvds 16290  FermatNocfmtno 47514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-dvds 16291  df-fmtno 47515
This theorem is referenced by:  goldbachthlem2  47533  fmtnoprmfac1  47552  fmtnoprmfac2  47554
  Copyright terms: Public domain W3C validator