![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoodd | Structured version Visualization version GIF version |
Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.) |
Ref | Expression |
---|---|
fmtnoodd | β’ (π β β0 β Β¬ 2 β₯ (FermatNoβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12313 | . . . . . 6 β’ 2 β β | |
2 | 1 | a1i 11 | . . . . 5 β’ (π β β0 β 2 β β) |
3 | id 22 | . . . . . . 7 β’ (π β β0 β π β β0) | |
4 | 2, 3 | nnexpcld 14237 | . . . . . 6 β’ (π β β0 β (2βπ) β β) |
5 | nnm1nn0 12541 | . . . . . 6 β’ ((2βπ) β β β ((2βπ) β 1) β β0) | |
6 | 4, 5 | syl 17 | . . . . 5 β’ (π β β0 β ((2βπ) β 1) β β0) |
7 | 2, 6 | nnexpcld 14237 | . . . 4 β’ (π β β0 β (2β((2βπ) β 1)) β β) |
8 | 7 | nnzd 12613 | . . 3 β’ (π β β0 β (2β((2βπ) β 1)) β β€) |
9 | oveq2 7422 | . . . . 5 β’ (π = (2β((2βπ) β 1)) β (2 Β· π) = (2 Β· (2β((2βπ) β 1)))) | |
10 | 9 | oveq1d 7429 | . . . 4 β’ (π = (2β((2βπ) β 1)) β ((2 Β· π) + 1) = ((2 Β· (2β((2βπ) β 1))) + 1)) |
11 | fmtno 46904 | . . . 4 β’ (π β β0 β (FermatNoβπ) = ((2β(2βπ)) + 1)) | |
12 | 10, 11 | eqeqan12rd 2740 | . . 3 β’ ((π β β0 β§ π = (2β((2βπ) β 1))) β (((2 Β· π) + 1) = (FermatNoβπ) β ((2 Β· (2β((2βπ) β 1))) + 1) = ((2β(2βπ)) + 1))) |
13 | 2cnd 12318 | . . . . . 6 β’ (π β β0 β 2 β β) | |
14 | 7 | nncnd 12256 | . . . . . 6 β’ (π β β0 β (2β((2βπ) β 1)) β β) |
15 | 13, 14 | mulcomd 11263 | . . . . 5 β’ (π β β0 β (2 Β· (2β((2βπ) β 1))) = ((2β((2βπ) β 1)) Β· 2)) |
16 | expm1t 14085 | . . . . . 6 β’ ((2 β β β§ (2βπ) β β) β (2β(2βπ)) = ((2β((2βπ) β 1)) Β· 2)) | |
17 | 13, 4, 16 | syl2anc 582 | . . . . 5 β’ (π β β0 β (2β(2βπ)) = ((2β((2βπ) β 1)) Β· 2)) |
18 | 15, 17 | eqtr4d 2768 | . . . 4 β’ (π β β0 β (2 Β· (2β((2βπ) β 1))) = (2β(2βπ))) |
19 | 18 | oveq1d 7429 | . . 3 β’ (π β β0 β ((2 Β· (2β((2βπ) β 1))) + 1) = ((2β(2βπ)) + 1)) |
20 | 8, 12, 19 | rspcedvd 3603 | . 2 β’ (π β β0 β βπ β β€ ((2 Β· π) + 1) = (FermatNoβπ)) |
21 | fmtnonn 46906 | . . . 4 β’ (π β β0 β (FermatNoβπ) β β) | |
22 | 21 | nnzd 12613 | . . 3 β’ (π β β0 β (FermatNoβπ) β β€) |
23 | odd2np1 16315 | . . 3 β’ ((FermatNoβπ) β β€ β (Β¬ 2 β₯ (FermatNoβπ) β βπ β β€ ((2 Β· π) + 1) = (FermatNoβπ))) | |
24 | 22, 23 | syl 17 | . 2 β’ (π β β0 β (Β¬ 2 β₯ (FermatNoβπ) β βπ β β€ ((2 Β· π) + 1) = (FermatNoβπ))) |
25 | 20, 24 | mpbird 256 | 1 β’ (π β β0 β Β¬ 2 β₯ (FermatNoβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 = wceq 1533 β wcel 2098 βwrex 3060 class class class wbr 5141 βcfv 6541 (class class class)co 7414 βcc 11134 1c1 11137 + caddc 11139 Β· cmul 11141 β cmin 11472 βcn 12240 2c2 12295 β0cn0 12500 β€cz 12586 βcexp 14056 β₯ cdvds 16228 FermatNocfmtno 46902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-seq 13997 df-exp 14057 df-dvds 16229 df-fmtno 46903 |
This theorem is referenced by: goldbachthlem2 46921 fmtnoprmfac1 46940 fmtnoprmfac2 46942 |
Copyright terms: Public domain | W3C validator |