MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscldtop Structured version   Visualization version   GIF version

Theorem iscldtop 22344
Description: A family is the closed sets of a topology iff it is a Moore collection and closed under finite union. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
iscldtop (𝐾 ∈ (Clsd “ (TopOn‘𝐵)) ↔ (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦

Proof of Theorem iscldtop
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fncld 22271 . . . . 5 Clsd Fn Top
2 fnfun 6579 . . . . 5 (Clsd Fn Top → Fun Clsd)
31, 2ax-mp 5 . . . 4 Fun Clsd
4 fvelima 6885 . . . 4 ((Fun Clsd ∧ 𝐾 ∈ (Clsd “ (TopOn‘𝐵))) → ∃𝑎 ∈ (TopOn‘𝐵)(Clsd‘𝑎) = 𝐾)
53, 4mpan 687 . . 3 (𝐾 ∈ (Clsd “ (TopOn‘𝐵)) → ∃𝑎 ∈ (TopOn‘𝐵)(Clsd‘𝑎) = 𝐾)
6 cldmreon 22343 . . . . . 6 (𝑎 ∈ (TopOn‘𝐵) → (Clsd‘𝑎) ∈ (Moore‘𝐵))
7 topontop 22160 . . . . . . 7 (𝑎 ∈ (TopOn‘𝐵) → 𝑎 ∈ Top)
8 0cld 22287 . . . . . . 7 (𝑎 ∈ Top → ∅ ∈ (Clsd‘𝑎))
97, 8syl 17 . . . . . 6 (𝑎 ∈ (TopOn‘𝐵) → ∅ ∈ (Clsd‘𝑎))
10 uncld 22290 . . . . . . . 8 ((𝑥 ∈ (Clsd‘𝑎) ∧ 𝑦 ∈ (Clsd‘𝑎)) → (𝑥𝑦) ∈ (Clsd‘𝑎))
1110adantl 482 . . . . . . 7 ((𝑎 ∈ (TopOn‘𝐵) ∧ (𝑥 ∈ (Clsd‘𝑎) ∧ 𝑦 ∈ (Clsd‘𝑎))) → (𝑥𝑦) ∈ (Clsd‘𝑎))
1211ralrimivva 3193 . . . . . 6 (𝑎 ∈ (TopOn‘𝐵) → ∀𝑥 ∈ (Clsd‘𝑎)∀𝑦 ∈ (Clsd‘𝑎)(𝑥𝑦) ∈ (Clsd‘𝑎))
136, 9, 123jca 1127 . . . . 5 (𝑎 ∈ (TopOn‘𝐵) → ((Clsd‘𝑎) ∈ (Moore‘𝐵) ∧ ∅ ∈ (Clsd‘𝑎) ∧ ∀𝑥 ∈ (Clsd‘𝑎)∀𝑦 ∈ (Clsd‘𝑎)(𝑥𝑦) ∈ (Clsd‘𝑎)))
14 eleq1 2824 . . . . . 6 ((Clsd‘𝑎) = 𝐾 → ((Clsd‘𝑎) ∈ (Moore‘𝐵) ↔ 𝐾 ∈ (Moore‘𝐵)))
15 eleq2 2825 . . . . . 6 ((Clsd‘𝑎) = 𝐾 → (∅ ∈ (Clsd‘𝑎) ↔ ∅ ∈ 𝐾))
16 eleq2 2825 . . . . . . . 8 ((Clsd‘𝑎) = 𝐾 → ((𝑥𝑦) ∈ (Clsd‘𝑎) ↔ (𝑥𝑦) ∈ 𝐾))
1716raleqbi1dv 3303 . . . . . . 7 ((Clsd‘𝑎) = 𝐾 → (∀𝑦 ∈ (Clsd‘𝑎)(𝑥𝑦) ∈ (Clsd‘𝑎) ↔ ∀𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
1817raleqbi1dv 3303 . . . . . 6 ((Clsd‘𝑎) = 𝐾 → (∀𝑥 ∈ (Clsd‘𝑎)∀𝑦 ∈ (Clsd‘𝑎)(𝑥𝑦) ∈ (Clsd‘𝑎) ↔ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
1914, 15, 183anbi123d 1435 . . . . 5 ((Clsd‘𝑎) = 𝐾 → (((Clsd‘𝑎) ∈ (Moore‘𝐵) ∧ ∅ ∈ (Clsd‘𝑎) ∧ ∀𝑥 ∈ (Clsd‘𝑎)∀𝑦 ∈ (Clsd‘𝑎)(𝑥𝑦) ∈ (Clsd‘𝑎)) ↔ (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾)))
2013, 19syl5ibcom 244 . . . 4 (𝑎 ∈ (TopOn‘𝐵) → ((Clsd‘𝑎) = 𝐾 → (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾)))
2120rexlimiv 3141 . . 3 (∃𝑎 ∈ (TopOn‘𝐵)(Clsd‘𝑎) = 𝐾 → (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
225, 21syl 17 . 2 (𝐾 ∈ (Clsd “ (TopOn‘𝐵)) → (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
23 simp1 1135 . . . . 5 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → 𝐾 ∈ (Moore‘𝐵))
24 simp2 1136 . . . . 5 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → ∅ ∈ 𝐾)
25 uneq1 4102 . . . . . . . . . 10 (𝑥 = 𝑏 → (𝑥𝑦) = (𝑏𝑦))
2625eleq1d 2821 . . . . . . . . 9 (𝑥 = 𝑏 → ((𝑥𝑦) ∈ 𝐾 ↔ (𝑏𝑦) ∈ 𝐾))
27 uneq2 4103 . . . . . . . . . 10 (𝑦 = 𝑐 → (𝑏𝑦) = (𝑏𝑐))
2827eleq1d 2821 . . . . . . . . 9 (𝑦 = 𝑐 → ((𝑏𝑦) ∈ 𝐾 ↔ (𝑏𝑐) ∈ 𝐾))
2926, 28rspc2v 3579 . . . . . . . 8 ((𝑏𝐾𝑐𝐾) → (∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾 → (𝑏𝑐) ∈ 𝐾))
3029com12 32 . . . . . . 7 (∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾 → ((𝑏𝐾𝑐𝐾) → (𝑏𝑐) ∈ 𝐾))
31303ad2ant3 1134 . . . . . 6 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → ((𝑏𝐾𝑐𝐾) → (𝑏𝑐) ∈ 𝐾))
32313impib 1115 . . . . 5 (((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) ∧ 𝑏𝐾𝑐𝐾) → (𝑏𝑐) ∈ 𝐾)
33 eqid 2736 . . . . 5 {𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾} = {𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾}
3423, 24, 32, 33mretopd 22341 . . . 4 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → ({𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾} ∈ (TopOn‘𝐵) ∧ 𝐾 = (Clsd‘{𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾})))
3534simprd 496 . . 3 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → 𝐾 = (Clsd‘{𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾}))
3634simpld 495 . . . 4 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → {𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾} ∈ (TopOn‘𝐵))
377ssriv 3935 . . . . . 6 (TopOn‘𝐵) ⊆ Top
381fndmi 6583 . . . . . 6 dom Clsd = Top
3937, 38sseqtrri 3968 . . . . 5 (TopOn‘𝐵) ⊆ dom Clsd
40 funfvima2 7157 . . . . 5 ((Fun Clsd ∧ (TopOn‘𝐵) ⊆ dom Clsd) → ({𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾} ∈ (TopOn‘𝐵) → (Clsd‘{𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾}) ∈ (Clsd “ (TopOn‘𝐵))))
413, 39, 40mp2an 689 . . . 4 ({𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾} ∈ (TopOn‘𝐵) → (Clsd‘{𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾}) ∈ (Clsd “ (TopOn‘𝐵)))
4236, 41syl 17 . . 3 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → (Clsd‘{𝑎 ∈ 𝒫 𝐵 ∣ (𝐵𝑎) ∈ 𝐾}) ∈ (Clsd “ (TopOn‘𝐵)))
4335, 42eqeltrd 2837 . 2 ((𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾) → 𝐾 ∈ (Clsd “ (TopOn‘𝐵)))
4422, 43impbii 208 1 (𝐾 ∈ (Clsd “ (TopOn‘𝐵)) ↔ (𝐾 ∈ (Moore‘𝐵) ∧ ∅ ∈ 𝐾 ∧ ∀𝑥𝐾𝑦𝐾 (𝑥𝑦) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wrex 3070  {crab 3403  cdif 3894  cun 3895  wss 3897  c0 4268  𝒫 cpw 4546  dom cdm 5614  cima 5617  Fun wfun 6467   Fn wfn 6468  cfv 6473  Moorecmre 17380  Topctop 22140  TopOnctopon 22157  Clsdccld 22265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-fv 6481  df-mre 17384  df-top 22141  df-topon 22158  df-cld 22268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator