MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscldtop Structured version   Visualization version   GIF version

Theorem iscldtop 22909
Description: A family is the closed sets of a topology iff it is a Moore collection and closed under finite union. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
iscldtop (𝐾 ∈ (Clsd β€œ (TopOnβ€˜π΅)) ↔ (𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾))
Distinct variable groups:   π‘₯,𝐡,𝑦   π‘₯,𝐾,𝑦

Proof of Theorem iscldtop
Dummy variables π‘Ž 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fncld 22836 . . . . 5 Clsd Fn Top
2 fnfun 6639 . . . . 5 (Clsd Fn Top β†’ Fun Clsd)
31, 2ax-mp 5 . . . 4 Fun Clsd
4 fvelima 6947 . . . 4 ((Fun Clsd ∧ 𝐾 ∈ (Clsd β€œ (TopOnβ€˜π΅))) β†’ βˆƒπ‘Ž ∈ (TopOnβ€˜π΅)(Clsdβ€˜π‘Ž) = 𝐾)
53, 4mpan 687 . . 3 (𝐾 ∈ (Clsd β€œ (TopOnβ€˜π΅)) β†’ βˆƒπ‘Ž ∈ (TopOnβ€˜π΅)(Clsdβ€˜π‘Ž) = 𝐾)
6 cldmreon 22908 . . . . . 6 (π‘Ž ∈ (TopOnβ€˜π΅) β†’ (Clsdβ€˜π‘Ž) ∈ (Mooreβ€˜π΅))
7 topontop 22725 . . . . . . 7 (π‘Ž ∈ (TopOnβ€˜π΅) β†’ π‘Ž ∈ Top)
8 0cld 22852 . . . . . . 7 (π‘Ž ∈ Top β†’ βˆ… ∈ (Clsdβ€˜π‘Ž))
97, 8syl 17 . . . . . 6 (π‘Ž ∈ (TopOnβ€˜π΅) β†’ βˆ… ∈ (Clsdβ€˜π‘Ž))
10 uncld 22855 . . . . . . . 8 ((π‘₯ ∈ (Clsdβ€˜π‘Ž) ∧ 𝑦 ∈ (Clsdβ€˜π‘Ž)) β†’ (π‘₯ βˆͺ 𝑦) ∈ (Clsdβ€˜π‘Ž))
1110adantl 481 . . . . . . 7 ((π‘Ž ∈ (TopOnβ€˜π΅) ∧ (π‘₯ ∈ (Clsdβ€˜π‘Ž) ∧ 𝑦 ∈ (Clsdβ€˜π‘Ž))) β†’ (π‘₯ βˆͺ 𝑦) ∈ (Clsdβ€˜π‘Ž))
1211ralrimivva 3192 . . . . . 6 (π‘Ž ∈ (TopOnβ€˜π΅) β†’ βˆ€π‘₯ ∈ (Clsdβ€˜π‘Ž)βˆ€π‘¦ ∈ (Clsdβ€˜π‘Ž)(π‘₯ βˆͺ 𝑦) ∈ (Clsdβ€˜π‘Ž))
136, 9, 123jca 1125 . . . . 5 (π‘Ž ∈ (TopOnβ€˜π΅) β†’ ((Clsdβ€˜π‘Ž) ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ (Clsdβ€˜π‘Ž) ∧ βˆ€π‘₯ ∈ (Clsdβ€˜π‘Ž)βˆ€π‘¦ ∈ (Clsdβ€˜π‘Ž)(π‘₯ βˆͺ 𝑦) ∈ (Clsdβ€˜π‘Ž)))
14 eleq1 2813 . . . . . 6 ((Clsdβ€˜π‘Ž) = 𝐾 β†’ ((Clsdβ€˜π‘Ž) ∈ (Mooreβ€˜π΅) ↔ 𝐾 ∈ (Mooreβ€˜π΅)))
15 eleq2 2814 . . . . . 6 ((Clsdβ€˜π‘Ž) = 𝐾 β†’ (βˆ… ∈ (Clsdβ€˜π‘Ž) ↔ βˆ… ∈ 𝐾))
16 eleq2 2814 . . . . . . . 8 ((Clsdβ€˜π‘Ž) = 𝐾 β†’ ((π‘₯ βˆͺ 𝑦) ∈ (Clsdβ€˜π‘Ž) ↔ (π‘₯ βˆͺ 𝑦) ∈ 𝐾))
1716raleqbi1dv 3325 . . . . . . 7 ((Clsdβ€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘¦ ∈ (Clsdβ€˜π‘Ž)(π‘₯ βˆͺ 𝑦) ∈ (Clsdβ€˜π‘Ž) ↔ βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾))
1817raleqbi1dv 3325 . . . . . 6 ((Clsdβ€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘₯ ∈ (Clsdβ€˜π‘Ž)βˆ€π‘¦ ∈ (Clsdβ€˜π‘Ž)(π‘₯ βˆͺ 𝑦) ∈ (Clsdβ€˜π‘Ž) ↔ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾))
1914, 15, 183anbi123d 1432 . . . . 5 ((Clsdβ€˜π‘Ž) = 𝐾 β†’ (((Clsdβ€˜π‘Ž) ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ (Clsdβ€˜π‘Ž) ∧ βˆ€π‘₯ ∈ (Clsdβ€˜π‘Ž)βˆ€π‘¦ ∈ (Clsdβ€˜π‘Ž)(π‘₯ βˆͺ 𝑦) ∈ (Clsdβ€˜π‘Ž)) ↔ (𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾)))
2013, 19syl5ibcom 244 . . . 4 (π‘Ž ∈ (TopOnβ€˜π΅) β†’ ((Clsdβ€˜π‘Ž) = 𝐾 β†’ (𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾)))
2120rexlimiv 3140 . . 3 (βˆƒπ‘Ž ∈ (TopOnβ€˜π΅)(Clsdβ€˜π‘Ž) = 𝐾 β†’ (𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾))
225, 21syl 17 . 2 (𝐾 ∈ (Clsd β€œ (TopOnβ€˜π΅)) β†’ (𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾))
23 simp1 1133 . . . . 5 ((𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾) β†’ 𝐾 ∈ (Mooreβ€˜π΅))
24 simp2 1134 . . . . 5 ((𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾) β†’ βˆ… ∈ 𝐾)
25 uneq1 4148 . . . . . . . . . 10 (π‘₯ = 𝑏 β†’ (π‘₯ βˆͺ 𝑦) = (𝑏 βˆͺ 𝑦))
2625eleq1d 2810 . . . . . . . . 9 (π‘₯ = 𝑏 β†’ ((π‘₯ βˆͺ 𝑦) ∈ 𝐾 ↔ (𝑏 βˆͺ 𝑦) ∈ 𝐾))
27 uneq2 4149 . . . . . . . . . 10 (𝑦 = 𝑐 β†’ (𝑏 βˆͺ 𝑦) = (𝑏 βˆͺ 𝑐))
2827eleq1d 2810 . . . . . . . . 9 (𝑦 = 𝑐 β†’ ((𝑏 βˆͺ 𝑦) ∈ 𝐾 ↔ (𝑏 βˆͺ 𝑐) ∈ 𝐾))
2926, 28rspc2v 3614 . . . . . . . 8 ((𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾) β†’ (βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾 β†’ (𝑏 βˆͺ 𝑐) ∈ 𝐾))
3029com12 32 . . . . . . 7 (βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾 β†’ ((𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾) β†’ (𝑏 βˆͺ 𝑐) ∈ 𝐾))
31303ad2ant3 1132 . . . . . 6 ((𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾) β†’ ((𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾) β†’ (𝑏 βˆͺ 𝑐) ∈ 𝐾))
32313impib 1113 . . . . 5 (((𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾) ∧ 𝑏 ∈ 𝐾 ∧ 𝑐 ∈ 𝐾) β†’ (𝑏 βˆͺ 𝑐) ∈ 𝐾)
33 eqid 2724 . . . . 5 {π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾} = {π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾}
3423, 24, 32, 33mretopd 22906 . . . 4 ((𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾) β†’ ({π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾} ∈ (TopOnβ€˜π΅) ∧ 𝐾 = (Clsdβ€˜{π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾})))
3534simprd 495 . . 3 ((𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾) β†’ 𝐾 = (Clsdβ€˜{π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾}))
3634simpld 494 . . . 4 ((𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾) β†’ {π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾} ∈ (TopOnβ€˜π΅))
377ssriv 3978 . . . . . 6 (TopOnβ€˜π΅) βŠ† Top
381fndmi 6643 . . . . . 6 dom Clsd = Top
3937, 38sseqtrri 4011 . . . . 5 (TopOnβ€˜π΅) βŠ† dom Clsd
40 funfvima2 7224 . . . . 5 ((Fun Clsd ∧ (TopOnβ€˜π΅) βŠ† dom Clsd) β†’ ({π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾} ∈ (TopOnβ€˜π΅) β†’ (Clsdβ€˜{π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾}) ∈ (Clsd β€œ (TopOnβ€˜π΅))))
413, 39, 40mp2an 689 . . . 4 ({π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾} ∈ (TopOnβ€˜π΅) β†’ (Clsdβ€˜{π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾}) ∈ (Clsd β€œ (TopOnβ€˜π΅)))
4236, 41syl 17 . . 3 ((𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾) β†’ (Clsdβ€˜{π‘Ž ∈ 𝒫 𝐡 ∣ (𝐡 βˆ– π‘Ž) ∈ 𝐾}) ∈ (Clsd β€œ (TopOnβ€˜π΅)))
4335, 42eqeltrd 2825 . 2 ((𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾) β†’ 𝐾 ∈ (Clsd β€œ (TopOnβ€˜π΅)))
4422, 43impbii 208 1 (𝐾 ∈ (Clsd β€œ (TopOnβ€˜π΅)) ↔ (𝐾 ∈ (Mooreβ€˜π΅) ∧ βˆ… ∈ 𝐾 ∧ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐾 (π‘₯ βˆͺ 𝑦) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  βˆƒwrex 3062  {crab 3424   βˆ– cdif 3937   βˆͺ cun 3938   βŠ† wss 3940  βˆ…c0 4314  π’« cpw 4594  dom cdm 5666   β€œ cima 5669  Fun wfun 6527   Fn wfn 6528  β€˜cfv 6533  Moorecmre 17522  Topctop 22705  TopOnctopon 22722  Clsdccld 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-fv 6541  df-mre 17526  df-top 22706  df-topon 22723  df-cld 22833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator