MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldrcl Structured version   Visualization version   GIF version

Theorem cldrcl 21322
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cldrcl (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)

Proof of Theorem cldrcl
StepHypRef Expression
1 elfvdm 6577 . 2 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd)
2 fncld 21318 . . 3 Clsd Fn Top
3 fndm 6332 . . 3 (Clsd Fn Top → dom Clsd = Top)
42, 3ax-mp 5 . 2 dom Clsd = Top
51, 4syl6eleq 2895 1 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1525  wcel 2083  dom cdm 5450   Fn wfn 6227  cfv 6232  Topctop 21189  Clsdccld 21312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-iota 6196  df-fun 6234  df-fn 6235  df-fv 6240  df-cld 21315
This theorem is referenced by:  cldss  21325  cldopn  21327  difopn  21330  iincld  21335  uncld  21337  cldcls  21338  clsss2  21368  opncldf3  21382  restcldi  21469  restcldr  21470  paste  21590  connsubclo  21720  txcld  21899  cldregopn  33290
  Copyright terms: Public domain W3C validator