MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldrcl Structured version   Visualization version   GIF version

Theorem cldrcl 22177
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cldrcl (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)

Proof of Theorem cldrcl
StepHypRef Expression
1 elfvdm 6806 . 2 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd)
2 fncld 22173 . . 3 Clsd Fn Top
32fndmi 6537 . 2 dom Clsd = Top
41, 3eleqtrdi 2849 1 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  dom cdm 5589  cfv 6433  Topctop 22042  Clsdccld 22167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-cld 22170
This theorem is referenced by:  cldss  22180  cldopn  22182  difopn  22185  iincld  22190  uncld  22192  cldcls  22193  clsss2  22223  opncldf3  22237  restcldi  22324  restcldr  22325  paste  22445  connsubclo  22575  txcld  22754  cldregopn  34520  clddisj  46197
  Copyright terms: Public domain W3C validator