![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cldrcl | Structured version Visualization version GIF version |
Description: Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
cldrcl | ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6577 | . 2 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ dom Clsd) | |
2 | fncld 21318 | . . 3 ⊢ Clsd Fn Top | |
3 | fndm 6332 | . . 3 ⊢ (Clsd Fn Top → dom Clsd = Top) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ dom Clsd = Top |
5 | 1, 4 | syl6eleq 2895 | 1 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 dom cdm 5450 Fn wfn 6227 ‘cfv 6232 Topctop 21189 Clsdccld 21312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-iota 6196 df-fun 6234 df-fn 6235 df-fv 6240 df-cld 21315 |
This theorem is referenced by: cldss 21325 cldopn 21327 difopn 21330 iincld 21335 uncld 21337 cldcls 21338 clsss2 21368 opncldf3 21382 restcldi 21469 restcldr 21470 paste 21590 connsubclo 21720 txcld 21899 cldregopn 33290 |
Copyright terms: Public domain | W3C validator |