Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneqeql2 | Structured version Visualization version GIF version |
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
fneqeql2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneqeql 6905 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹 ∩ 𝐺) = 𝐴)) | |
2 | eqss 3932 | . . 3 ⊢ (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ (dom (𝐹 ∩ 𝐺) ⊆ 𝐴 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) | |
3 | inss1 4159 | . . . . . 6 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
4 | dmss 5800 | . . . . . 6 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → dom (𝐹 ∩ 𝐺) ⊆ dom 𝐹) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (𝐹 ∩ 𝐺) ⊆ dom 𝐹 |
6 | fndm 6520 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom 𝐹 = 𝐴) |
8 | 5, 7 | sseqtrid 3969 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) ⊆ 𝐴) |
9 | 8 | biantrurd 532 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ⊆ dom (𝐹 ∩ 𝐺) ↔ (dom (𝐹 ∩ 𝐺) ⊆ 𝐴 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺)))) |
10 | 2, 9 | bitr4id 289 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
11 | 1, 10 | bitrd 278 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 dom cdm 5580 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: evlseu 21203 hauseqcn 31750 |
Copyright terms: Public domain | W3C validator |