MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneqeql2 Structured version   Visualization version   GIF version

Theorem fneqeql2 7036
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
fneqeql2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺𝐴 ⊆ dom (𝐹𝐺)))

Proof of Theorem fneqeql2
StepHypRef Expression
1 fneqeql 7035 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = 𝐴))
2 eqss 3974 . . 3 (dom (𝐹𝐺) = 𝐴 ↔ (dom (𝐹𝐺) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐺)))
3 inss1 4212 . . . . . 6 (𝐹𝐺) ⊆ 𝐹
4 dmss 5882 . . . . . 6 ((𝐹𝐺) ⊆ 𝐹 → dom (𝐹𝐺) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . 5 dom (𝐹𝐺) ⊆ dom 𝐹
6 fndm 6640 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76adantr 480 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom 𝐹 = 𝐴)
85, 7sseqtrid 4001 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) ⊆ 𝐴)
98biantrurd 532 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ⊆ dom (𝐹𝐺) ↔ (dom (𝐹𝐺) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐺))))
102, 9bitr4id 290 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = 𝐴𝐴 ⊆ dom (𝐹𝐺)))
111, 10bitrd 279 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺𝐴 ⊆ dom (𝐹𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  cin 3925  wss 3926  dom cdm 5654   Fn wfn 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-fv 6538
This theorem is referenced by:  evlseu  22039  hauseqcn  33875
  Copyright terms: Public domain W3C validator