MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fneqeql2 Structured version   Visualization version   GIF version

Theorem fneqeql2 7038
Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
fneqeql2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺𝐴 ⊆ dom (𝐹𝐺)))

Proof of Theorem fneqeql2
StepHypRef Expression
1 fneqeql 7037 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹𝐺) = 𝐴))
2 eqss 3989 . . 3 (dom (𝐹𝐺) = 𝐴 ↔ (dom (𝐹𝐺) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐺)))
3 inss1 4220 . . . . . 6 (𝐹𝐺) ⊆ 𝐹
4 dmss 5892 . . . . . 6 ((𝐹𝐺) ⊆ 𝐹 → dom (𝐹𝐺) ⊆ dom 𝐹)
53, 4ax-mp 5 . . . . 5 dom (𝐹𝐺) ⊆ dom 𝐹
6 fndm 6642 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76adantr 480 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom 𝐹 = 𝐴)
85, 7sseqtrid 4026 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → dom (𝐹𝐺) ⊆ 𝐴)
98biantrurd 532 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐴 ⊆ dom (𝐹𝐺) ↔ (dom (𝐹𝐺) ⊆ 𝐴𝐴 ⊆ dom (𝐹𝐺))))
102, 9bitr4id 290 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (dom (𝐹𝐺) = 𝐴𝐴 ⊆ dom (𝐹𝐺)))
111, 10bitrd 279 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺𝐴 ⊆ dom (𝐹𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  cin 3939  wss 3940  dom cdm 5666   Fn wfn 6528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-fv 6541
This theorem is referenced by:  evlseu  21955  hauseqcn  33333
  Copyright terms: Public domain W3C validator