| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneqeql2 | Structured version Visualization version GIF version | ||
| Description: Two functions are equal iff their equalizer contains the whole domain. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| fneqeql2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneqeql 7018 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ dom (𝐹 ∩ 𝐺) = 𝐴)) | |
| 2 | eqss 3962 | . . 3 ⊢ (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ (dom (𝐹 ∩ 𝐺) ⊆ 𝐴 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) | |
| 3 | inss1 4200 | . . . . . 6 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
| 4 | dmss 5866 | . . . . . 6 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → dom (𝐹 ∩ 𝐺) ⊆ dom 𝐹) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom (𝐹 ∩ 𝐺) ⊆ dom 𝐹 |
| 6 | fndm 6621 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom 𝐹 = 𝐴) |
| 8 | 5, 7 | sseqtrid 3989 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → dom (𝐹 ∩ 𝐺) ⊆ 𝐴) |
| 9 | 8 | biantrurd 532 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐴 ⊆ dom (𝐹 ∩ 𝐺) ↔ (dom (𝐹 ∩ 𝐺) ⊆ 𝐴 ∧ 𝐴 ⊆ dom (𝐹 ∩ 𝐺)))) |
| 10 | 2, 9 | bitr4id 290 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (dom (𝐹 ∩ 𝐺) = 𝐴 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
| 11 | 1, 10 | bitrd 279 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ 𝐴 ⊆ dom (𝐹 ∩ 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 dom cdm 5638 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: evlseu 21990 hauseqcn 33888 |
| Copyright terms: Public domain | W3C validator |