MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit1 Structured version   Visualization version   GIF version

Theorem pwssplit1 19824
Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit1 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵onto𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.y . . 3 𝑌 = (𝑊s 𝑈)
2 pwssplit1.z . . 3 𝑍 = (𝑊s 𝑉)
3 pwssplit1.b . . 3 𝐵 = (Base‘𝑌)
4 pwssplit1.c . . 3 𝐶 = (Base‘𝑍)
5 pwssplit1.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
61, 2, 3, 4, 5pwssplit0 19823 . 2 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
7 simp1 1133 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ Mnd)
8 simp2 1134 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
9 simp3 1135 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
108, 9ssexd 5192 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
11 eqid 2798 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
122, 11, 4pwselbasb 16753 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑉 ∈ V) → (𝑎𝐶𝑎:𝑉⟶(Base‘𝑊)))
137, 10, 12syl2anc 587 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → (𝑎𝐶𝑎:𝑉⟶(Base‘𝑊)))
1413biimpa 480 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑎:𝑉⟶(Base‘𝑊))
15 fvex 6658 . . . . . . . . . 10 (0g𝑊) ∈ V
1615fconst 6539 . . . . . . . . 9 ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶{(0g𝑊)}
1716a1i 11 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶{(0g𝑊)})
18 simpl1 1188 . . . . . . . . . 10 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑊 ∈ Mnd)
19 eqid 2798 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
2011, 19mndidcl 17918 . . . . . . . . . 10 (𝑊 ∈ Mnd → (0g𝑊) ∈ (Base‘𝑊))
2118, 20syl 17 . . . . . . . . 9 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (0g𝑊) ∈ (Base‘𝑊))
2221snssd 4702 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → {(0g𝑊)} ⊆ (Base‘𝑊))
2317, 22fssd 6502 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶(Base‘𝑊))
24 disjdif 4379 . . . . . . . 8 (𝑉 ∩ (𝑈𝑉)) = ∅
2524a1i 11 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑉 ∩ (𝑈𝑉)) = ∅)
26 fun 6514 . . . . . . 7 (((𝑎:𝑉⟶(Base‘𝑊) ∧ ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶(Base‘𝑊)) ∧ (𝑉 ∩ (𝑈𝑉)) = ∅) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)))
2714, 23, 25, 26syl21anc 836 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)))
28 simpl3 1190 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑉𝑈)
29 undif 4388 . . . . . . . 8 (𝑉𝑈 ↔ (𝑉 ∪ (𝑈𝑉)) = 𝑈)
3028, 29sylib 221 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑉 ∪ (𝑈𝑉)) = 𝑈)
31 unidm 4079 . . . . . . . 8 ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊)
3231a1i 11 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊))
3330, 32feq23d 6482 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)) ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3427, 33mpbid 235 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊))
35 simpl2 1189 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑈𝑋)
361, 11, 3pwselbasb 16753 . . . . . 6 ((𝑊 ∈ Mnd ∧ 𝑈𝑋) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3718, 35, 36syl2anc 587 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3834, 37mpbird 260 . . . 4 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵)
395fvtresfn 6747 . . . . . 6 ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 → (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))) = ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉))
4038, 39syl 17 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))) = ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉))
41 resundir 5833 . . . . . . 7 ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = ((𝑎𝑉) ∪ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉))
42 ffn 6487 . . . . . . . . 9 (𝑎:𝑉⟶(Base‘𝑊) → 𝑎 Fn 𝑉)
43 fnresdm 6438 . . . . . . . . 9 (𝑎 Fn 𝑉 → (𝑎𝑉) = 𝑎)
4414, 42, 433syl 18 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎𝑉) = 𝑎)
45 incom 4128 . . . . . . . . . 10 ((𝑈𝑉) ∩ 𝑉) = (𝑉 ∩ (𝑈𝑉))
4645, 24eqtri 2821 . . . . . . . . 9 ((𝑈𝑉) ∩ 𝑉) = ∅
47 fnconstg 6541 . . . . . . . . . . 11 ((0g𝑊) ∈ V → ((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉))
4815, 47ax-mp 5 . . . . . . . . . 10 ((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉)
49 fnresdisj 6439 . . . . . . . . . 10 (((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉) → (((𝑈𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅))
5048, 49mp1i 13 . . . . . . . . 9 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (((𝑈𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅))
5146, 50mpbii 236 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅)
5244, 51uneq12d 4091 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎𝑉) ∪ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉)) = (𝑎 ∪ ∅))
5341, 52syl5eq 2845 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = (𝑎 ∪ ∅))
54 un0 4298 . . . . . 6 (𝑎 ∪ ∅) = 𝑎
5553, 54eqtrdi 2849 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = 𝑎)
5640, 55eqtr2d 2834 . . . 4 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))))
57 fveq2 6645 . . . . 5 (𝑏 = (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) → (𝐹𝑏) = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))))
5857rspceeqv 3586 . . . 4 (((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})))) → ∃𝑏𝐵 𝑎 = (𝐹𝑏))
5938, 56, 58syl2anc 587 . . 3 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ∃𝑏𝐵 𝑎 = (𝐹𝑏))
6059ralrimiva 3149 . 2 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → ∀𝑎𝐶𝑏𝐵 𝑎 = (𝐹𝑏))
61 dffo3 6845 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ∀𝑎𝐶𝑏𝐵 𝑎 = (𝐹𝑏)))
626, 60, 61sylanbrc 586 1 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525  cmpt 5110   × cxp 5517  cres 5521   Fn wfn 6319  wf 6320  ontowfo 6322  cfv 6324  (class class class)co 7135  Basecbs 16475  0gc0g 16705  s cpws 16712  Mndcmnd 17903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904
This theorem is referenced by:  pwslnmlem2  40037
  Copyright terms: Public domain W3C validator