MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit1 Structured version   Visualization version   GIF version

Theorem pwssplit1 20236
Description: Splitting for structure powers, part 1: restriction is an onto function. The only actual monoid law we need here is that the base set is nonempty. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y 𝑌 = (𝑊s 𝑈)
pwssplit1.z 𝑍 = (𝑊s 𝑉)
pwssplit1.b 𝐵 = (Base‘𝑌)
pwssplit1.c 𝐶 = (Base‘𝑍)
pwssplit1.f 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
Assertion
Ref Expression
pwssplit1 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵onto𝐶)
Distinct variable groups:   𝑥,𝑌   𝑥,𝑊   𝑥,𝑈   𝑥,𝑍   𝑥,𝑉   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwssplit1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.y . . 3 𝑌 = (𝑊s 𝑈)
2 pwssplit1.z . . 3 𝑍 = (𝑊s 𝑉)
3 pwssplit1.b . . 3 𝐵 = (Base‘𝑌)
4 pwssplit1.c . . 3 𝐶 = (Base‘𝑍)
5 pwssplit1.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))
61, 2, 3, 4, 5pwssplit0 20235 . 2 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵𝐶)
7 simp1 1134 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑊 ∈ Mnd)
8 simp2 1135 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑈𝑋)
9 simp3 1136 . . . . . . . . . 10 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑉𝑈)
108, 9ssexd 5243 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝑉 ∈ V)
11 eqid 2738 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
122, 11, 4pwselbasb 17116 . . . . . . . . 9 ((𝑊 ∈ Mnd ∧ 𝑉 ∈ V) → (𝑎𝐶𝑎:𝑉⟶(Base‘𝑊)))
137, 10, 12syl2anc 583 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → (𝑎𝐶𝑎:𝑉⟶(Base‘𝑊)))
1413biimpa 476 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑎:𝑉⟶(Base‘𝑊))
15 fvex 6769 . . . . . . . . . 10 (0g𝑊) ∈ V
1615fconst 6644 . . . . . . . . 9 ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶{(0g𝑊)}
1716a1i 11 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶{(0g𝑊)})
18 simpl1 1189 . . . . . . . . . 10 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑊 ∈ Mnd)
19 eqid 2738 . . . . . . . . . . 11 (0g𝑊) = (0g𝑊)
2011, 19mndidcl 18315 . . . . . . . . . 10 (𝑊 ∈ Mnd → (0g𝑊) ∈ (Base‘𝑊))
2118, 20syl 17 . . . . . . . . 9 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (0g𝑊) ∈ (Base‘𝑊))
2221snssd 4739 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → {(0g𝑊)} ⊆ (Base‘𝑊))
2317, 22fssd 6602 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶(Base‘𝑊))
24 disjdif 4402 . . . . . . . 8 (𝑉 ∩ (𝑈𝑉)) = ∅
2524a1i 11 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑉 ∩ (𝑈𝑉)) = ∅)
26 fun 6620 . . . . . . 7 (((𝑎:𝑉⟶(Base‘𝑊) ∧ ((𝑈𝑉) × {(0g𝑊)}):(𝑈𝑉)⟶(Base‘𝑊)) ∧ (𝑉 ∩ (𝑈𝑉)) = ∅) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)))
2714, 23, 25, 26syl21anc 834 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)))
28 simpl3 1191 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑉𝑈)
29 undif 4412 . . . . . . . 8 (𝑉𝑈 ↔ (𝑉 ∪ (𝑈𝑉)) = 𝑈)
3028, 29sylib 217 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑉 ∪ (𝑈𝑉)) = 𝑈)
31 unidm 4082 . . . . . . . 8 ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊)
3231a1i 11 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊))
3330, 32feq23d 6579 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):(𝑉 ∪ (𝑈𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)) ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3427, 33mpbid 231 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊))
35 simpl2 1190 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑈𝑋)
361, 11, 3pwselbasb 17116 . . . . . 6 ((𝑊 ∈ Mnd ∧ 𝑈𝑋) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3718, 35, 36syl2anc 583 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})):𝑈⟶(Base‘𝑊)))
3834, 37mpbird 256 . . . 4 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵)
395fvtresfn 6859 . . . . . 6 ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵 → (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))) = ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉))
4038, 39syl 17 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))) = ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉))
41 resundir 5895 . . . . . . 7 ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = ((𝑎𝑉) ∪ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉))
42 ffn 6584 . . . . . . . . 9 (𝑎:𝑉⟶(Base‘𝑊) → 𝑎 Fn 𝑉)
43 fnresdm 6535 . . . . . . . . 9 (𝑎 Fn 𝑉 → (𝑎𝑉) = 𝑎)
4414, 42, 433syl 18 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (𝑎𝑉) = 𝑎)
45 disjdifr 4403 . . . . . . . . 9 ((𝑈𝑉) ∩ 𝑉) = ∅
46 fnconstg 6646 . . . . . . . . . . 11 ((0g𝑊) ∈ V → ((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉))
4715, 46ax-mp 5 . . . . . . . . . 10 ((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉)
48 fnresdisj 6536 . . . . . . . . . 10 (((𝑈𝑉) × {(0g𝑊)}) Fn (𝑈𝑉) → (((𝑈𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅))
4947, 48mp1i 13 . . . . . . . . 9 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (((𝑈𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅))
5045, 49mpbii 232 . . . . . . . 8 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉) = ∅)
5144, 50uneq12d 4094 . . . . . . 7 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎𝑉) ∪ (((𝑈𝑉) × {(0g𝑊)}) ↾ 𝑉)) = (𝑎 ∪ ∅))
5241, 51eqtrid 2790 . . . . . 6 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = (𝑎 ∪ ∅))
53 un0 4321 . . . . . 6 (𝑎 ∪ ∅) = 𝑎
5452, 53eqtrdi 2795 . . . . 5 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ↾ 𝑉) = 𝑎)
5540, 54eqtr2d 2779 . . . 4 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → 𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))))
56 fveq2 6756 . . . . 5 (𝑏 = (𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) → (𝐹𝑏) = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)}))))
5756rspceeqv 3567 . . . 4 (((𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})) ∈ 𝐵𝑎 = (𝐹‘(𝑎 ∪ ((𝑈𝑉) × {(0g𝑊)})))) → ∃𝑏𝐵 𝑎 = (𝐹𝑏))
5838, 55, 57syl2anc 583 . . 3 (((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) ∧ 𝑎𝐶) → ∃𝑏𝐵 𝑎 = (𝐹𝑏))
5958ralrimiva 3107 . 2 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → ∀𝑎𝐶𝑏𝐵 𝑎 = (𝐹𝑏))
60 dffo3 6960 . 2 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ∀𝑎𝐶𝑏𝐵 𝑎 = (𝐹𝑏)))
616, 59, 60sylanbrc 582 1 ((𝑊 ∈ Mnd ∧ 𝑈𝑋𝑉𝑈) → 𝐹:𝐵onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  cmpt 5153   × cxp 5578  cres 5582   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  Basecbs 16840  0gc0g 17067  s cpws 17074  Mndcmnd 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301
This theorem is referenced by:  pwslnmlem2  40834
  Copyright terms: Public domain W3C validator