| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funressn | Structured version Visualization version GIF version | ||
| Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| funressn | ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6511 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | fnressn 7091 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉}) | |
| 3 | 1, 2 | sylanb 581 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉}) |
| 4 | eqimss 3988 | . . 3 ⊢ ((𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉} → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
| 6 | disjsn 4661 | . . . . 5 ⊢ ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹) | |
| 7 | fnresdisj 6601 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅)) | |
| 8 | 1, 7 | sylbi 217 | . . . . 5 ⊢ (Fun 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅)) |
| 9 | 6, 8 | bitr3id 285 | . . . 4 ⊢ (Fun 𝐹 → (¬ 𝐵 ∈ dom 𝐹 ↔ (𝐹 ↾ {𝐵}) = ∅)) |
| 10 | 9 | biimpa 476 | . . 3 ⊢ ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = ∅) |
| 11 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ {〈𝐵, (𝐹‘𝐵)〉} | |
| 12 | 10, 11 | eqsstrdi 3974 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
| 13 | 5, 12 | pm2.61dan 812 | 1 ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 {csn 4573 〈cop 4579 dom cdm 5614 ↾ cres 5616 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: fnsnr 7097 tfrlem16 8312 fnfi 9087 fodomfi 9196 fodomfiOLD 9214 |
| Copyright terms: Public domain | W3C validator |