Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funressn | Structured version Visualization version GIF version |
Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
funressn | ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6464 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | fnressn 7030 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉}) | |
3 | 1, 2 | sylanb 581 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉}) |
4 | eqimss 3977 | . . 3 ⊢ ((𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉} → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
6 | disjsn 4647 | . . . . 5 ⊢ ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹) | |
7 | fnresdisj 6552 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅)) | |
8 | 1, 7 | sylbi 216 | . . . . 5 ⊢ (Fun 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅)) |
9 | 6, 8 | bitr3id 285 | . . . 4 ⊢ (Fun 𝐹 → (¬ 𝐵 ∈ dom 𝐹 ↔ (𝐹 ↾ {𝐵}) = ∅)) |
10 | 9 | biimpa 477 | . . 3 ⊢ ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = ∅) |
11 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ {〈𝐵, (𝐹‘𝐵)〉} | |
12 | 10, 11 | eqsstrdi 3975 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
13 | 5, 12 | pm2.61dan 810 | 1 ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 〈cop 4567 dom cdm 5589 ↾ cres 5591 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 |
This theorem is referenced by: fnsnr 7037 tfrlem16 8224 fnfi 8964 fodomfi 9092 |
Copyright terms: Public domain | W3C validator |