MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funressn Structured version   Visualization version   GIF version

Theorem funressn 7109
Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
funressn (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})

Proof of Theorem funressn
StepHypRef Expression
1 funfn 6535 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fnressn 7108 . . . 4 ((𝐹 Fn dom 𝐹𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
31, 2sylanb 582 . . 3 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
4 eqimss 4004 . . 3 ((𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩} → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
53, 4syl 17 . 2 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
6 disjsn 4676 . . . . 5 ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹)
7 fnresdisj 6625 . . . . . 6 (𝐹 Fn dom 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅))
81, 7sylbi 216 . . . . 5 (Fun 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅))
96, 8bitr3id 285 . . . 4 (Fun 𝐹 → (¬ 𝐵 ∈ dom 𝐹 ↔ (𝐹 ↾ {𝐵}) = ∅))
109biimpa 478 . . 3 ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = ∅)
11 0ss 4360 . . 3 ∅ ⊆ {⟨𝐵, (𝐹𝐵)⟩}
1210, 11eqsstrdi 4002 . 2 ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
135, 12pm2.61dan 812 1 (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  cin 3913  wss 3914  c0 4286  {csn 4590  cop 4596  dom cdm 5637  cres 5639  Fun wfun 6494   Fn wfn 6495  cfv 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508
This theorem is referenced by:  fnsnr  7115  tfrlem16  8343  fnfi  9131  fodomfi  9275
  Copyright terms: Public domain W3C validator