![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funressn | Structured version Visualization version GIF version |
Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
funressn | ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹‘𝐵)⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6578 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | fnressn 7155 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹‘𝐵)⟩}) | |
3 | 1, 2 | sylanb 581 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹‘𝐵)⟩}) |
4 | eqimss 4040 | . . 3 ⊢ ((𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹‘𝐵)⟩} → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹‘𝐵)⟩}) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹‘𝐵)⟩}) |
6 | disjsn 4715 | . . . . 5 ⊢ ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹) | |
7 | fnresdisj 6670 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅)) | |
8 | 1, 7 | sylbi 216 | . . . . 5 ⊢ (Fun 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅)) |
9 | 6, 8 | bitr3id 284 | . . . 4 ⊢ (Fun 𝐹 → (¬ 𝐵 ∈ dom 𝐹 ↔ (𝐹 ↾ {𝐵}) = ∅)) |
10 | 9 | biimpa 477 | . . 3 ⊢ ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = ∅) |
11 | 0ss 4396 | . . 3 ⊢ ∅ ⊆ {⟨𝐵, (𝐹‘𝐵)⟩} | |
12 | 10, 11 | eqsstrdi 4036 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹‘𝐵)⟩}) |
13 | 5, 12 | pm2.61dan 811 | 1 ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹‘𝐵)⟩}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 {csn 4628 ⟨cop 4634 dom cdm 5676 ↾ cres 5678 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: fnsnr 7162 tfrlem16 8392 fnfi 9180 fodomfi 9324 |
Copyright terms: Public domain | W3C validator |