MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funressn Structured version   Visualization version   GIF version

Theorem funressn 7134
Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
funressn (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})

Proof of Theorem funressn
StepHypRef Expression
1 funfn 6549 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fnressn 7133 . . . 4 ((𝐹 Fn dom 𝐹𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
31, 2sylanb 581 . . 3 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩})
4 eqimss 4008 . . 3 ((𝐹 ↾ {𝐵}) = {⟨𝐵, (𝐹𝐵)⟩} → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
53, 4syl 17 . 2 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
6 disjsn 4678 . . . . 5 ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹)
7 fnresdisj 6641 . . . . . 6 (𝐹 Fn dom 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅))
81, 7sylbi 217 . . . . 5 (Fun 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅))
96, 8bitr3id 285 . . . 4 (Fun 𝐹 → (¬ 𝐵 ∈ dom 𝐹 ↔ (𝐹 ↾ {𝐵}) = ∅))
109biimpa 476 . . 3 ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = ∅)
11 0ss 4366 . . 3 ∅ ⊆ {⟨𝐵, (𝐹𝐵)⟩}
1210, 11eqsstrdi 3994 . 2 ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
135, 12pm2.61dan 812 1 (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {⟨𝐵, (𝐹𝐵)⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  c0 4299  {csn 4592  cop 4598  dom cdm 5641  cres 5643  Fun wfun 6508   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by:  fnsnr  7140  tfrlem16  8364  fnfi  9148  fodomfi  9268  fodomfiOLD  9288
  Copyright terms: Public domain W3C validator