Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funressn | Structured version Visualization version GIF version |
Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
funressn | ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6448 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | fnressn 7012 | . . . 4 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉}) | |
3 | 1, 2 | sylanb 580 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉}) |
4 | eqimss 3973 | . . 3 ⊢ ((𝐹 ↾ {𝐵}) = {〈𝐵, (𝐹‘𝐵)〉} → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
6 | disjsn 4644 | . . . . 5 ⊢ ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹) | |
7 | fnresdisj 6536 | . . . . . 6 ⊢ (𝐹 Fn dom 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅)) | |
8 | 1, 7 | sylbi 216 | . . . . 5 ⊢ (Fun 𝐹 → ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ (𝐹 ↾ {𝐵}) = ∅)) |
9 | 6, 8 | bitr3id 284 | . . . 4 ⊢ (Fun 𝐹 → (¬ 𝐵 ∈ dom 𝐹 ↔ (𝐹 ↾ {𝐵}) = ∅)) |
10 | 9 | biimpa 476 | . . 3 ⊢ ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) = ∅) |
11 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ {〈𝐵, (𝐹‘𝐵)〉} | |
12 | 10, 11 | eqsstrdi 3971 | . 2 ⊢ ((Fun 𝐹 ∧ ¬ 𝐵 ∈ dom 𝐹) → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
13 | 5, 12 | pm2.61dan 809 | 1 ⊢ (Fun 𝐹 → (𝐹 ↾ {𝐵}) ⊆ {〈𝐵, (𝐹‘𝐵)〉}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 〈cop 4564 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: fnsnr 7019 tfrlem16 8195 fnfi 8925 fodomfi 9022 |
Copyright terms: Public domain | W3C validator |