MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksm1edg Structured version   Visualization version   GIF version

Theorem wwlksm1edg 29861
Description: Removing the trailing edge from a walk (as word) with at least one edge results in a walk. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 19-Apr-2021.) (Revised by AV, 26-Oct-2022.)
Assertion
Ref Expression
wwlksm1edg ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))

Proof of Theorem wwlksm1edg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2729 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iswwlks 29816 . . 3 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
4 lencl 14474 . . . . . . . . 9 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
5 simpl 482 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
6 1red 11151 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 1 ∈ ℝ)
7 2re 12236 . . . . . . . . . . . . . . 15 2 ∈ ℝ
87a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 2 ∈ ℝ)
9 nn0re 12427 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
109adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
11 1le2 12366 . . . . . . . . . . . . . . 15 1 ≤ 2
1211a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 1 ≤ 2)
13 simpr 484 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
146, 8, 10, 12, 13letrd 11307 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 1 ≤ (♯‘𝑊))
155, 14jca 511 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑊)))
16 elnnnn0c 12463 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑊)))
1715, 16sylibr 234 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
18 lbfzo0 13636 . . . . . . . . . . 11 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
1917, 18sylibr 234 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 0 ∈ (0..^(♯‘𝑊)))
20 nn0ge2m1nn 12488 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ)
21 lbfzo0 13636 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘𝑊) − 1)) ↔ ((♯‘𝑊) − 1) ∈ ℕ)
2220, 21sylibr 234 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 0 ∈ (0..^((♯‘𝑊) − 1)))
2319, 22jca 511 . . . . . . . . 9 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (0 ∈ (0..^(♯‘𝑊)) ∧ 0 ∈ (0..^((♯‘𝑊) − 1))))
244, 23sylan 580 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0 ∈ (0..^(♯‘𝑊)) ∧ 0 ∈ (0..^((♯‘𝑊) − 1))))
25 inelcm 4424 . . . . . . . 8 ((0 ∈ (0..^(♯‘𝑊)) ∧ 0 ∈ (0..^((♯‘𝑊) − 1))) → ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) ≠ ∅)
2624, 25syl 17 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) ≠ ∅)
27 wrdfn 14469 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 Fn (0..^(♯‘𝑊)))
2827adantr 480 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → 𝑊 Fn (0..^(♯‘𝑊)))
29 fnresdisj 6620 . . . . . . . . . 10 (𝑊 Fn (0..^(♯‘𝑊)) → (((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅))
3028, 29syl 17 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅))
31 nn0ge2m1nn0 12489 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ0)
3210lem1d 12092 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
3331, 5, 323jca 1128 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
344, 33sylan 580 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
35 elfz2nn0 13555 . . . . . . . . . . 11 (((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ↔ (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
3634, 35sylibr 234 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
37 pfxres 14620 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → (𝑊 prefix ((♯‘𝑊) − 1)) = (𝑊 ↾ (0..^((♯‘𝑊) − 1))))
3837eqeq1d 2731 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix ((♯‘𝑊) − 1)) = ∅ ↔ (𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅))
3938bicomd 223 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 prefix ((♯‘𝑊) − 1)) = ∅))
4036, 39syldan 591 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 prefix ((♯‘𝑊) − 1)) = ∅))
4130, 40bitr2d 280 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 prefix ((♯‘𝑊) − 1)) = ∅ ↔ ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) = ∅))
4241necon3bid 2969 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅ ↔ ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) ≠ ∅))
4326, 42mpbird 257 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅)
44433ad2antl2 1187 . . . . 5 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅)
45 pfxcl 14618 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word (Vtx‘𝐺))
4645a1d 25 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (2 ≤ (♯‘𝑊) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word (Vtx‘𝐺)))
47463ad2ant2 1134 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) → (2 ≤ (♯‘𝑊) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word (Vtx‘𝐺)))
4847imp 406 . . . . 5 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word (Vtx‘𝐺))
49 nn0z 12530 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
50 peano2zm 12552 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
5149, 50syl 17 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
52 peano2zm 12552 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) − 1) ∈ ℤ → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
5351, 52syl 17 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
5453adantr 480 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
5551adantr 480 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℤ)
56 peano2rem 11465 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) − 1) ∈ ℝ)
579, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℝ)
5857lem1d 12092 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1))
5958adantr 480 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1))
6054, 55, 593jca 1128 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((((♯‘𝑊) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ ∧ (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1)))
614, 60sylan 580 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((((♯‘𝑊) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ ∧ (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1)))
62 eluz2 12775 . . . . . . . . . . . . . 14 (((♯‘𝑊) − 1) ∈ (ℤ‘(((♯‘𝑊) − 1) − 1)) ↔ ((((♯‘𝑊) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ ∧ (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1)))
6361, 62sylibr 234 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (ℤ‘(((♯‘𝑊) − 1) − 1)))
649lem1d 12092 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
6564adantr 480 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
6631, 5, 653jca 1128 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
674, 66sylan 580 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
6867, 35sylibr 234 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
69 pfxlen 14624 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = ((♯‘𝑊) − 1))
7069oveq1d 7384 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (((♯‘𝑊) − 1) − 1))
7168, 70syldan 591 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (((♯‘𝑊) − 1) − 1))
7271fveq2d 6844 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (ℤ‘((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (ℤ‘(((♯‘𝑊) − 1) − 1)))
7363, 72eleqtrrd 2831 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (ℤ‘((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)))
74 fzoss2 13624 . . . . . . . . . . . 12 (((♯‘𝑊) − 1) ∈ (ℤ‘((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) → (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
7573, 74syl 17 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
76 ssralv 4012 . . . . . . . . . . 11 ((0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ⊆ (0..^((♯‘𝑊) − 1)) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
7775, 76syl 17 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
7868, 69syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (♯‘(𝑊 prefix ((♯‘𝑊) − 1))) = ((♯‘𝑊) − 1))
7978oveq1d 7384 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1) = (((♯‘𝑊) − 1) − 1))
8079oveq2d 7385 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) = (0..^(((♯‘𝑊) − 1) − 1)))
8180eleq2d 2814 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) ↔ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))))
82 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ∈ Word (Vtx‘𝐺))
8382adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → 𝑊 ∈ Word (Vtx‘𝐺))
8436adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
854, 31sylan 580 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ0)
86 nn0z 12530 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) − 1) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
87 fzossrbm1 13625 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) − 1) ∈ ℤ → (0..^(((♯‘𝑊) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
8886, 87syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) − 1) ∈ ℕ0 → (0..^(((♯‘𝑊) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
8985, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0..^(((♯‘𝑊) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
9089sselda 3943 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → 𝑥 ∈ (0..^((♯‘𝑊) − 1)))
91 pfxfv 14623 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥) = (𝑊𝑥))
9283, 84, 90, 91syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥) = (𝑊𝑥))
9392eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑊𝑥) = ((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥))
944, 20sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ)
95 elfzom1p1elfzo 13682 . . . . . . . . . . . . . . . . . . . 20 ((((♯‘𝑊) − 1) ∈ ℕ ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑥 + 1) ∈ (0..^((♯‘𝑊) − 1)))
9694, 95sylan 580 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑥 + 1) ∈ (0..^((♯‘𝑊) − 1)))
97 pfxfv 14623 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ (𝑥 + 1) ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1)) = (𝑊‘(𝑥 + 1)))
9883, 84, 96, 97syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1)) = (𝑊‘(𝑥 + 1)))
9998eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑊‘(𝑥 + 1)) = ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1)))
10093, 99preq12d 4701 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))})
101100ex 412 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1)) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))}))
10281, 101sylbid 240 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))}))
103102imp 406 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1))) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))})
104103eleq1d 2813 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1))) → ({(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
105104biimpd 229 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1))) → ({(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → {((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
106105ralimdva 3145 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (∀𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)){((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
10777, 106syld 47 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)){((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
108107expcom 413 . . . . . . . 8 (2 ≤ (♯‘𝑊) → (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)){((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))} ∈ (Edg‘𝐺))))
109108com3l 89 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → (2 ≤ (♯‘𝑊) → ∀𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)){((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))} ∈ (Edg‘𝐺))))
110109a1i 11 . . . . . 6 (𝑊 ≠ ∅ → (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → (2 ≤ (♯‘𝑊) → ∀𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)){((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))} ∈ (Edg‘𝐺)))))
1111103imp1 1348 . . . . 5 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → ∀𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)){((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))} ∈ (Edg‘𝐺))
1121, 2iswwlks 29816 . . . . 5 ((𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺) ↔ ((𝑊 prefix ((♯‘𝑊) − 1)) ≠ ∅ ∧ (𝑊 prefix ((♯‘𝑊) − 1)) ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘(𝑊 prefix ((♯‘𝑊) − 1))) − 1)){((𝑊 prefix ((♯‘𝑊) − 1))‘𝑥), ((𝑊 prefix ((♯‘𝑊) − 1))‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
11344, 48, 111, 112syl3anbrc 1344 . . . 4 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
114113ex 412 . . 3 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) → (2 ≤ (♯‘𝑊) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺)))
1153, 114sylbi 217 . 2 (𝑊 ∈ (WWalks‘𝐺) → (2 ≤ (♯‘𝑊) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺)))
116115imp 406 1 ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 prefix ((♯‘𝑊) − 1)) ∈ (WWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cin 3910  wss 3911  c0 4292  {cpr 4587   class class class wbr 5102  cres 5633   Fn wfn 6494  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047  cle 11185  cmin 11381  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  ..^cfzo 13591  chash 14271  Word cword 14454   prefix cpfx 14611  Vtxcvtx 28976  Edgcedg 29027  WWalkscwwlks 29805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-substr 14582  df-pfx 14612  df-wwlks 29810
This theorem is referenced by:  wwlksnextproplem3  29891
  Copyright terms: Public domain W3C validator