MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksm1edg Structured version   Visualization version   GIF version

Theorem wwlksm1edg 27015
Description: Removing the trailing edge from a walk (as word) with at least one edge results in a walk. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 19-Apr-2021.)
Assertion
Ref Expression
wwlksm1edg ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺))

Proof of Theorem wwlksm1edg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2771 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
31, 2iswwlks 26964 . . 3 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
4 lencl 13520 . . . . . . . . 9 (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈ ℕ0)
5 simpl 468 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0)
6 1red 10257 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 1 ∈ ℝ)
7 2re 11292 . . . . . . . . . . . . . . 15 2 ∈ ℝ
87a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 2 ∈ ℝ)
9 nn0re 11503 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
109adantr 466 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℝ)
11 1le2 11443 . . . . . . . . . . . . . . 15 1 ≤ 2
1211a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 1 ≤ 2)
13 simpr 471 . . . . . . . . . . . . . 14 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 2 ≤ (♯‘𝑊))
146, 8, 10, 12, 13letrd 10396 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 1 ≤ (♯‘𝑊))
155, 14jca 501 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑊)))
16 elnnnn0c 11540 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑊)))
1715, 16sylibr 224 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
18 lbfzo0 12716 . . . . . . . . . . 11 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
1917, 18sylibr 224 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 0 ∈ (0..^(♯‘𝑊)))
20 nn0ge2m1nn 11562 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ)
21 lbfzo0 12716 . . . . . . . . . . 11 (0 ∈ (0..^((♯‘𝑊) − 1)) ↔ ((♯‘𝑊) − 1) ∈ ℕ)
2220, 21sylibr 224 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → 0 ∈ (0..^((♯‘𝑊) − 1)))
2319, 22jca 501 . . . . . . . . 9 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (0 ∈ (0..^(♯‘𝑊)) ∧ 0 ∈ (0..^((♯‘𝑊) − 1))))
244, 23sylan 569 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0 ∈ (0..^(♯‘𝑊)) ∧ 0 ∈ (0..^((♯‘𝑊) − 1))))
25 inelcm 4175 . . . . . . . 8 ((0 ∈ (0..^(♯‘𝑊)) ∧ 0 ∈ (0..^((♯‘𝑊) − 1))) → ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) ≠ ∅)
2624, 25syl 17 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) ≠ ∅)
27 wrdfn 13515 . . . . . . . . . . 11 (𝑊 ∈ Word (Vtx‘𝐺) → 𝑊 Fn (0..^(♯‘𝑊)))
2827adantr 466 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → 𝑊 Fn (0..^(♯‘𝑊)))
29 fnresdisj 6141 . . . . . . . . . 10 (𝑊 Fn (0..^(♯‘𝑊)) → (((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅))
3028, 29syl 17 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅))
31 nn0ge2m1nn0 11563 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ0)
3210lem1d 11159 . . . . . . . . . . . . 13 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
3331, 5, 323jca 1122 . . . . . . . . . . . 12 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
344, 33sylan 569 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
35 elfz2nn0 12638 . . . . . . . . . . 11 (((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ↔ (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
3634, 35sylibr 224 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
37 swrd0val 13629 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = (𝑊 ↾ (0..^((♯‘𝑊) − 1))))
3837eqeq1d 2773 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = ∅ ↔ (𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅))
3938bicomd 213 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = ∅))
4036, 39syldan 579 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 ↾ (0..^((♯‘𝑊) − 1))) = ∅ ↔ (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = ∅))
4130, 40bitr2d 269 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) = ∅ ↔ ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) = ∅))
4241necon3bid 2987 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ≠ ∅ ↔ ((0..^(♯‘𝑊)) ∩ (0..^((♯‘𝑊) − 1))) ≠ ∅))
4326, 42mpbird 247 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ≠ ∅)
44433ad2antl2 1201 . . . . 5 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ≠ ∅)
45 swrdcl 13627 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ Word (Vtx‘𝐺))
4645a1d 25 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (2 ≤ (♯‘𝑊) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ Word (Vtx‘𝐺)))
47463ad2ant2 1128 . . . . . 6 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) → (2 ≤ (♯‘𝑊) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ Word (Vtx‘𝐺)))
4847imp 393 . . . . 5 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ Word (Vtx‘𝐺))
49 nn0z 11602 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℤ)
50 peano2zm 11622 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℤ → ((♯‘𝑊) − 1) ∈ ℤ)
5149, 50syl 17 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
52 peano2zm 11622 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) − 1) ∈ ℤ → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
5351, 52syl 17 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
5453adantr 466 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) − 1) ∈ ℤ)
5551adantr 466 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℤ)
56 peano2rem 10550 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℝ → ((♯‘𝑊) − 1) ∈ ℝ)
579, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℝ)
5857lem1d 11159 . . . . . . . . . . . . . . . . 17 ((♯‘𝑊) ∈ ℕ0 → (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1))
5958adantr 466 . . . . . . . . . . . . . . . 16 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1))
6054, 55, 593jca 1122 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((((♯‘𝑊) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ ∧ (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1)))
614, 60sylan 569 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((((♯‘𝑊) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ ∧ (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1)))
62 eluz2 11894 . . . . . . . . . . . . . 14 (((♯‘𝑊) − 1) ∈ (ℤ‘(((♯‘𝑊) − 1) − 1)) ↔ ((((♯‘𝑊) − 1) − 1) ∈ ℤ ∧ ((♯‘𝑊) − 1) ∈ ℤ ∧ (((♯‘𝑊) − 1) − 1) ≤ ((♯‘𝑊) − 1)))
6361, 62sylibr 224 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (ℤ‘(((♯‘𝑊) − 1) − 1)))
649lem1d 11159 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
6564adantr 466 . . . . . . . . . . . . . . . . . 18 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ≤ (♯‘𝑊))
6631, 5, 653jca 1122 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
674, 66sylan 569 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ ((♯‘𝑊) − 1) ≤ (♯‘𝑊)))
6867, 35sylibr 224 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
69 swrd0len 13630 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) = ((♯‘𝑊) − 1))
7069oveq1d 6808 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) → ((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1) = (((♯‘𝑊) − 1) − 1))
7168, 70syldan 579 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1) = (((♯‘𝑊) − 1) − 1))
7271fveq2d 6336 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (ℤ‘((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) = (ℤ‘(((♯‘𝑊) − 1) − 1)))
7363, 72eleqtrrd 2853 . . . . . . . . . . . 12 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ (ℤ‘((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)))
74 fzoss2 12704 . . . . . . . . . . . 12 (((♯‘𝑊) − 1) ∈ (ℤ‘((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) → (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
7573, 74syl 17 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
76 ssralv 3815 . . . . . . . . . . 11 ((0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) ⊆ (0..^((♯‘𝑊) − 1)) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
7775, 76syl 17 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
7868, 69syldan 579 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) = ((♯‘𝑊) − 1))
7978oveq1d 6808 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1) = (((♯‘𝑊) − 1) − 1))
8079oveq2d 6809 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) = (0..^(((♯‘𝑊) − 1) − 1)))
8180eleq2d 2836 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) ↔ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))))
82 simpl 468 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ∈ Word (Vtx‘𝐺))
8382adantr 466 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → 𝑊 ∈ Word (Vtx‘𝐺))
8436adantr 466 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)))
854, 31sylan 569 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ0)
86 nn0z 11602 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) − 1) ∈ ℕ0 → ((♯‘𝑊) − 1) ∈ ℤ)
87 fzossrbm1 12705 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝑊) − 1) ∈ ℤ → (0..^(((♯‘𝑊) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
8886, 87syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑊) − 1) ∈ ℕ0 → (0..^(((♯‘𝑊) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
8985, 88syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (0..^(((♯‘𝑊) − 1) − 1)) ⊆ (0..^((♯‘𝑊) − 1)))
9089sselda 3752 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → 𝑥 ∈ (0..^((♯‘𝑊) − 1)))
91 swrd0fv 13648 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥) = (𝑊𝑥))
9283, 84, 90, 91syl3anc 1476 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥) = (𝑊𝑥))
9392eqcomd 2777 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑊𝑥) = ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥))
944, 20sylan 569 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → ((♯‘𝑊) − 1) ∈ ℕ)
95 elfzom1p1elfzo 12756 . . . . . . . . . . . . . . . . . . . 20 ((((♯‘𝑊) − 1) ∈ ℕ ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑥 + 1) ∈ (0..^((♯‘𝑊) − 1)))
9694, 95sylan 569 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑥 + 1) ∈ (0..^((♯‘𝑊) − 1)))
97 swrd0fv 13648 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ (𝑥 + 1) ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1)) = (𝑊‘(𝑥 + 1)))
9883, 84, 96, 97syl3anc 1476 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1)) = (𝑊‘(𝑥 + 1)))
9998eqcomd 2777 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → (𝑊‘(𝑥 + 1)) = ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1)))
10093, 99preq12d 4412 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1))) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))})
101100ex 397 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑥 ∈ (0..^(((♯‘𝑊) − 1) − 1)) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))}))
10281, 101sylbid 230 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))}))
103102imp 393 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1))) → {(𝑊𝑥), (𝑊‘(𝑥 + 1))} = {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))})
104103eleq1d 2835 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1))) → ({(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
105104biimpd 219 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) ∧ 𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1))) → ({(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → {((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
106105ralimdva 3111 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
10777, 106syld 47 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
108107expcom 398 . . . . . . . 8 (2 ≤ (♯‘𝑊) → (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺))))
109108com3l 89 . . . . . . 7 (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → (2 ≤ (♯‘𝑊) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺))))
110109a1i 11 . . . . . 6 (𝑊 ≠ ∅ → (𝑊 ∈ Word (Vtx‘𝐺) → (∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺) → (2 ≤ (♯‘𝑊) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))))
1111103imp1 1440 . . . . 5 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺))
1121, 2iswwlks 26964 . . . . 5 ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺) ↔ ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ≠ ∅ ∧ (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘(𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)) − 1)){((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘𝑥), ((𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩)‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
11344, 48, 111, 112syl3anbrc 1428 . . . 4 (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺))
114113ex 397 . . 3 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑥 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑥), (𝑊‘(𝑥 + 1))} ∈ (Edg‘𝐺)) → (2 ≤ (♯‘𝑊) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺)))
1153, 114sylbi 207 . 2 (𝑊 ∈ (WWalks‘𝐺) → (2 ≤ (♯‘𝑊) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺)))
116115imp 393 1 ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (♯‘𝑊)) → (𝑊 substr ⟨0, ((♯‘𝑊) − 1)⟩) ∈ (WWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  cin 3722  wss 3723  c0 4063  {cpr 4318  cop 4322   class class class wbr 4786  cres 5251   Fn wfn 6026  cfv 6031  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   + caddc 10141  cle 10277  cmin 10468  cn 11222  2c2 11272  0cn0 11494  cz 11579  cuz 11888  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13487   substr csubstr 13491  Vtxcvtx 26095  Edgcedg 26160  WWalkscwwlks 26953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-substr 13499  df-wwlks 26958
This theorem is referenced by:  wwlksnextproplem3  27056
  Copyright terms: Public domain W3C validator