MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmonmul Structured version   Visualization version   GIF version

Theorem mplmonmul 21964
Description: The product of two monomials adds the exponent vectors together. For example, the product of (𝑥↑2)(𝑦↑2) with (𝑦↑1)(𝑧↑3) is (𝑥↑2)(𝑦↑3)(𝑧↑3), where the exponent vectors ⟨2, 2, 0⟩ and ⟨0, 1, 3⟩ are added to give ⟨2, 3, 3⟩. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplmon.s 𝑃 = (𝐼 mPoly 𝑅)
mplmon.b 𝐵 = (Base‘𝑃)
mplmon.z 0 = (0g𝑅)
mplmon.o 1 = (1r𝑅)
mplmon.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon.i (𝜑𝐼𝑊)
mplmon.r (𝜑𝑅 ∈ Ring)
mplmon.x (𝜑𝑋𝐷)
mplmonmul.t · = (.r𝑃)
mplmonmul.x (𝜑𝑌𝐷)
Assertion
Ref Expression
mplmonmul (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )))
Distinct variable groups:   𝑦,𝐷   𝑓,𝐼   𝜑,𝑦   𝑦,𝑓,𝑋   𝑦, 0   𝑦, 1   𝑦,𝑅   𝑓,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   · (𝑦,𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   0 (𝑓)

Proof of Theorem mplmonmul
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplmon.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
2 mplmon.b . . 3 𝐵 = (Base‘𝑃)
3 eqid 2730 . . 3 (.r𝑅) = (.r𝑅)
4 mplmonmul.t . . 3 · = (.r𝑃)
5 mplmon.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
6 mplmon.z . . . 4 0 = (0g𝑅)
7 mplmon.o . . . 4 1 = (1r𝑅)
8 mplmon.i . . . 4 (𝜑𝐼𝑊)
9 mplmon.r . . . 4 (𝜑𝑅 ∈ Ring)
10 mplmon.x . . . 4 (𝜑𝑋𝐷)
111, 2, 6, 7, 5, 8, 9, 10mplmon 21963 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
12 mplmonmul.x . . . 4 (𝜑𝑌𝐷)
131, 2, 6, 7, 5, 8, 9, 12mplmon 21963 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) ∈ 𝐵)
141, 2, 3, 4, 5, 11, 13mplmul 21941 . 2 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))))
15 eqeq1 2734 . . . . 5 (𝑦 = 𝑘 → (𝑦 = (𝑋f + 𝑌) ↔ 𝑘 = (𝑋f + 𝑌)))
1615ifbid 4497 . . . 4 (𝑦 = 𝑘 → if(𝑦 = (𝑋f + 𝑌), 1 , 0 ) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
1716cbvmptv 5193 . . 3 (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
18 simpr 484 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑋 ∈ {𝑥𝐷𝑥r𝑘})
1918snssd 4759 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → {𝑋} ⊆ {𝑥𝐷𝑥r𝑘})
2019resmptd 5986 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))
2120oveq2d 7357 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))))
229ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑅 ∈ Ring)
23 ringmnd 20154 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2422, 23syl 17 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑅 ∈ Mnd)
2510ad2antrr 726 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑋𝐷)
26 iftrue 4479 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1 , 0 ) = 1 )
27 eqid 2730 . . . . . . . . . . . . 13 (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))
287fvexi 6831 . . . . . . . . . . . . 13 1 ∈ V
2926, 27, 28fvmpt 6924 . . . . . . . . . . . 12 (𝑋𝐷 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 )
3025, 29syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 )
31 ssrab2 4028 . . . . . . . . . . . . 13 {𝑥𝐷𝑥r𝑘} ⊆ 𝐷
32 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘𝐷)
33 eqid 2730 . . . . . . . . . . . . . . 15 {𝑥𝐷𝑥r𝑘} = {𝑥𝐷𝑥r𝑘}
345, 33psrbagconcl 21857 . . . . . . . . . . . . . 14 ((𝑘𝐷𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) ∈ {𝑥𝐷𝑥r𝑘})
3532, 18, 34syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) ∈ {𝑥𝐷𝑥r𝑘})
3631, 35sselid 3930 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) ∈ 𝐷)
37 eqeq1 2734 . . . . . . . . . . . . . 14 (𝑦 = (𝑘f𝑋) → (𝑦 = 𝑌 ↔ (𝑘f𝑋) = 𝑌))
3837ifbid 4497 . . . . . . . . . . . . 13 (𝑦 = (𝑘f𝑋) → if(𝑦 = 𝑌, 1 , 0 ) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
39 eqid 2730 . . . . . . . . . . . . 13 (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))
406fvexi 6831 . . . . . . . . . . . . . 14 0 ∈ V
4128, 40ifex 4524 . . . . . . . . . . . . 13 if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ V
4238, 39, 41fvmpt 6924 . . . . . . . . . . . 12 ((𝑘f𝑋) ∈ 𝐷 → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋)) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
4336, 42syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋)) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
4430, 43oveq12d 7359 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) = ( 1 (.r𝑅)if((𝑘f𝑋) = 𝑌, 1 , 0 )))
45 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
4645, 7ringidcl 20176 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
4745, 6ring0cl 20178 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
4846, 47ifcld 4520 . . . . . . . . . . . 12 (𝑅 ∈ Ring → if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅))
4922, 48syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅))
5045, 3, 7ringlidm 20180 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)if((𝑘f𝑋) = 𝑌, 1 , 0 )) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
5122, 49, 50syl2anc 584 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ( 1 (.r𝑅)if((𝑘f𝑋) = 𝑌, 1 , 0 )) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
525psrbagf 21848 . . . . . . . . . . . . . . . . . 18 (𝑘𝐷𝑘:𝐼⟶ℕ0)
5332, 52syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘:𝐼⟶ℕ0)
5453ffvelcdmda 7012 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
5510adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝑋𝐷)
565psrbagf 21848 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐷𝑋:𝐼⟶ℕ0)
5755, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑋:𝐼⟶ℕ0)
5857ffvelcdmda 7012 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
5958adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
605psrbagf 21848 . . . . . . . . . . . . . . . . . . . 20 (𝑌𝐷𝑌:𝐼⟶ℕ0)
6112, 60syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌:𝐼⟶ℕ0)
6261adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑌:𝐼⟶ℕ0)
6362ffvelcdmda 7012 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
6463adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
65 nn0cn 12383 . . . . . . . . . . . . . . . . 17 ((𝑘𝑧) ∈ ℕ0 → (𝑘𝑧) ∈ ℂ)
66 nn0cn 12383 . . . . . . . . . . . . . . . . 17 ((𝑋𝑧) ∈ ℕ0 → (𝑋𝑧) ∈ ℂ)
67 nn0cn 12383 . . . . . . . . . . . . . . . . 17 ((𝑌𝑧) ∈ ℕ0 → (𝑌𝑧) ∈ ℂ)
68 subadd 11355 . . . . . . . . . . . . . . . . 17 (((𝑘𝑧) ∈ ℂ ∧ (𝑋𝑧) ∈ ℂ ∧ (𝑌𝑧) ∈ ℂ) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
6965, 66, 67, 68syl3an 1160 . . . . . . . . . . . . . . . 16 (((𝑘𝑧) ∈ ℕ0 ∧ (𝑋𝑧) ∈ ℕ0 ∧ (𝑌𝑧) ∈ ℕ0) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
7054, 59, 64, 69syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
71 eqcom 2737 . . . . . . . . . . . . . . 15 (((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧) ↔ (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧)))
7270, 71bitrdi 287 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
7372ralbidva 3151 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
74 mpteqb 6943 . . . . . . . . . . . . . 14 (∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) ∈ V → ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ ∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧)))
75 ovexd 7376 . . . . . . . . . . . . . 14 (𝑧𝐼 → ((𝑘𝑧) − (𝑋𝑧)) ∈ V)
7674, 75mprg 3051 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ ∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧))
77 mpteqb 6943 . . . . . . . . . . . . . 14 (∀𝑧𝐼 (𝑘𝑧) ∈ V → ((𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
78 fvexd 6832 . . . . . . . . . . . . . 14 (𝑧𝐼 → (𝑘𝑧) ∈ V)
7977, 78mprg 3051 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧)))
8073, 76, 793bitr4g 314 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ (𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧)))))
818ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝐼𝑊)
8253feqmptd 6885 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘 = (𝑧𝐼 ↦ (𝑘𝑧)))
8357feqmptd 6885 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐷) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
8483adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
8581, 54, 59, 82, 84offval2 7625 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) = (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))))
8662feqmptd 6885 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
8786adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
8885, 87eqeq12d 2746 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑘f𝑋) = 𝑌 ↔ (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧))))
898adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐷) → 𝐼𝑊)
9089, 58, 63, 83, 86offval2 7625 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → (𝑋f + 𝑌) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))))
9190adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑋f + 𝑌) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))))
9282, 91eqeq12d 2746 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘 = (𝑋f + 𝑌) ↔ (𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧)))))
9380, 88, 923bitr4d 311 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑘f𝑋) = 𝑌𝑘 = (𝑋f + 𝑌)))
9493ifbid 4497 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if((𝑘f𝑋) = 𝑌, 1 , 0 ) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
9544, 51, 943eqtrd 2769 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
9694, 49eqeltrrd 2830 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if(𝑘 = (𝑋f + 𝑌), 1 , 0 ) ∈ (Base‘𝑅))
9795, 96eqeltrd 2829 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) ∈ (Base‘𝑅))
98 fveq2 6817 . . . . . . . . . 10 (𝑗 = 𝑋 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋))
99 oveq2 7349 . . . . . . . . . . 11 (𝑗 = 𝑋 → (𝑘f𝑗) = (𝑘f𝑋))
10099fveq2d 6821 . . . . . . . . . 10 (𝑗 = 𝑋 → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) = ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋)))
10198, 100oveq12d 7359 . . . . . . . . 9 (𝑗 = 𝑋 → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))))
10245, 101gsumsn 19859 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑋𝐷 ∧ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))))
10324, 25, 97, 102syl3anc 1373 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))))
10421, 103, 953eqtrd 2769 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
1056gsum0 18584 . . . . . . 7 (𝑅 Σg ∅) = 0
106 disjsn 4662 . . . . . . . . 9 (({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘})
1079ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑅 ∈ Ring)
1081, 45, 2, 5, 11mplelf 21928 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
109108ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
110 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑗 ∈ {𝑥𝐷𝑥r𝑘})
11131, 110sselid 3930 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑗𝐷)
112109, 111ffvelcdmd 7013 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅))
1131, 45, 2, 5, 13mplelf 21928 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅))
114113ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅))
115 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘𝐷)
1165, 33psrbagconcl 21857 . . . . . . . . . . . . . . . 16 ((𝑘𝐷𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑗) ∈ {𝑥𝐷𝑥r𝑘})
117115, 110, 116syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑗) ∈ {𝑥𝐷𝑥r𝑘})
11831, 117sselid 3930 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑗) ∈ 𝐷)
119114, 118ffvelcdmd 7013 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) ∈ (Base‘𝑅))
12045, 3ringcl 20161 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅) ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) ∈ (Base‘𝑅)) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) ∈ (Base‘𝑅))
121107, 112, 119, 120syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) ∈ (Base‘𝑅))
122121fmpttd 7043 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))):{𝑥𝐷𝑥r𝑘}⟶(Base‘𝑅))
123 ffn 6647 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))):{𝑥𝐷𝑥r𝑘}⟶(Base‘𝑅) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) Fn {𝑥𝐷𝑥r𝑘})
124 fnresdisj 6597 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) Fn {𝑥𝐷𝑥r𝑘} → (({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅))
125122, 123, 1243syl 18 . . . . . . . . . 10 ((𝜑𝑘𝐷) → (({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅))
126125biimpa 476 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ ({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅)
127106, 126sylan2br 595 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅)
128127oveq2d 7357 . . . . . . 7 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = (𝑅 Σg ∅))
129 breq1 5092 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥r ≤ (𝑋f + 𝑌) ↔ 𝑋r ≤ (𝑋f + 𝑌)))
13058nn0red 12435 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℝ)
131 nn0addge1 12419 . . . . . . . . . . . . . 14 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℕ0) → (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
132130, 63, 131syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
133132ralrimiva 3122 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
134 ovexd 7376 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → ((𝑋𝑧) + (𝑌𝑧)) ∈ V)
13589, 58, 134, 83, 90ofrfval2 7626 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → (𝑋r ≤ (𝑋f + 𝑌) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧))))
136133, 135mpbird 257 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝑋r ≤ (𝑋f + 𝑌))
137129, 55, 136elrabd 3647 . . . . . . . . . 10 ((𝜑𝑘𝐷) → 𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝑋f + 𝑌)})
138 breq2 5093 . . . . . . . . . . . 12 (𝑘 = (𝑋f + 𝑌) → (𝑥r𝑘𝑥r ≤ (𝑋f + 𝑌)))
139138rabbidv 3400 . . . . . . . . . . 11 (𝑘 = (𝑋f + 𝑌) → {𝑥𝐷𝑥r𝑘} = {𝑥𝐷𝑥r ≤ (𝑋f + 𝑌)})
140139eleq2d 2815 . . . . . . . . . 10 (𝑘 = (𝑋f + 𝑌) → (𝑋 ∈ {𝑥𝐷𝑥r𝑘} ↔ 𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝑋f + 𝑌)}))
141137, 140syl5ibrcom 247 . . . . . . . . 9 ((𝜑𝑘𝐷) → (𝑘 = (𝑋f + 𝑌) → 𝑋 ∈ {𝑥𝐷𝑥r𝑘}))
142141con3dimp 408 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ¬ 𝑘 = (𝑋f + 𝑌))
143142iffalsed 4484 . . . . . . 7 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if(𝑘 = (𝑋f + 𝑌), 1 , 0 ) = 0 )
144105, 128, 1433eqtr4a 2791 . . . . . 6 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
145104, 144pm2.61dan 812 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
1469adantr 480 . . . . . . 7 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
147 ringcmn 20193 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
148146, 147syl 17 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
1495psrbaglefi 21856 . . . . . . 7 (𝑘𝐷 → {𝑥𝐷𝑥r𝑘} ∈ Fin)
150149adantl 481 . . . . . 6 ((𝜑𝑘𝐷) → {𝑥𝐷𝑥r𝑘} ∈ Fin)
151 ssdif 4092 . . . . . . . . . . . 12 ({𝑥𝐷𝑥r𝑘} ⊆ 𝐷 → ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋}))
15231, 151ax-mp 5 . . . . . . . . . . 11 ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋})
153152sseli 3928 . . . . . . . . . 10 (𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) → 𝑗 ∈ (𝐷 ∖ {𝑋}))
154108adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
155 eldifsni 4740 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦𝑋)
156155adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦𝑋)
157156neneqd 2931 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋)
158157iffalsed 4484 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 )
159 ovex 7374 . . . . . . . . . . . . . 14 (ℕ0m 𝐼) ∈ V
1605, 159rabex2 5277 . . . . . . . . . . . . 13 𝐷 ∈ V
161160a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → 𝐷 ∈ V)
162158, 161suppss2 8125 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})
16340a1i 11 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 0 ∈ V)
164154, 162, 161, 163suppssr 8120 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ (𝐷 ∖ {𝑋})) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 )
165153, 164sylan2 593 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 )
166165oveq1d 7356 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))
167 eldifi 4079 . . . . . . . . 9 (𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) → 𝑗 ∈ {𝑥𝐷𝑥r𝑘})
16845, 3, 6ringlz 20204 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
169107, 119, 168syl2anc 584 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
170167, 169sylan2 593 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
171166, 170eqtrd 2765 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
172160rabex 5275 . . . . . . . 8 {𝑥𝐷𝑥r𝑘} ∈ V
173172a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑥𝐷𝑥r𝑘} ∈ V)
174171, 173suppss2 8125 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) supp 0 ) ⊆ {𝑋})
175160mptrabex 7154 . . . . . . . . 9 (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V
176 funmpt 6515 . . . . . . . . 9 Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))
177175, 176, 403pm3.2i 1340 . . . . . . . 8 ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∧ 0 ∈ V)
178177a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∧ 0 ∈ V))
179 snfi 8960 . . . . . . . 8 {𝑋} ∈ Fin
180179a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑋} ∈ Fin)
181 suppssfifsupp 9259 . . . . . . 7 ((((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) supp 0 ) ⊆ {𝑋})) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) finSupp 0 )
182178, 180, 174, 181syl12anc 836 . . . . . 6 ((𝜑𝑘𝐷) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) finSupp 0 )
18345, 6, 148, 150, 122, 174, 182gsumres 19818 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))))
184145, 183eqtr3d 2767 . . . 4 ((𝜑𝑘𝐷) → if(𝑘 = (𝑋f + 𝑌), 1 , 0 ) = (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))))
185184mpteq2dva 5182 . . 3 (𝜑 → (𝑘𝐷 ↦ if(𝑘 = (𝑋f + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))))
18617, 185eqtrid 2777 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))))
18714, 186eqtr4d 2768 1 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  {crab 3393  Vcvv 3434  cdif 3897  cin 3899  wss 3900  c0 4281  ifcif 4473  {csn 4574   class class class wbr 5089  cmpt 5170  ccnv 5613  cres 5616  cima 5617  Fun wfun 6471   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  f cof 7603  r cofr 7604   supp csupp 8085  m cmap 8745  Fincfn 8864   finSupp cfsupp 9240  cc 10996  cr 10997   + caddc 11001  cle 11139  cmin 11336  cn 12117  0cn0 12373  Basecbs 17112  .rcmulr 17154  0gc0g 17335   Σg cgsu 17336  Mndcmnd 18634  CMndccmn 19685  1rcur 20092  Ringcrg 20144   mPoly cmpl 21836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-tset 17172  df-0g 17337  df-gsum 17338  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-psr 21839  df-mpl 21841
This theorem is referenced by:  mplcoe3  21966  mplcoe5  21968  mplmon2mul  21997
  Copyright terms: Public domain W3C validator