Step | Hyp | Ref
| Expression |
1 | | mplmon.s |
. . 3
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
2 | | mplmon.b |
. . 3
⊢ 𝐵 = (Base‘𝑃) |
3 | | eqid 2738 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
4 | | mplmonmul.t |
. . 3
⊢ · =
(.r‘𝑃) |
5 | | mplmon.d |
. . 3
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
6 | | mplmon.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
7 | | mplmon.o |
. . . 4
⊢ 1 =
(1r‘𝑅) |
8 | | mplmon.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
9 | | mplmon.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
10 | | mplmon.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
11 | 1, 2, 6, 7, 5, 8, 9, 10 | mplmon 21246 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
12 | | mplmonmul.x |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐷) |
13 | 1, 2, 6, 7, 5, 8, 9, 12 | mplmon 21246 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) ∈ 𝐵) |
14 | 1, 2, 3, 4, 5, 11,
13 | mplmul 21225 |
. 2
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))))) |
15 | | eqeq1 2742 |
. . . . 5
⊢ (𝑦 = 𝑘 → (𝑦 = (𝑋 ∘f + 𝑌) ↔ 𝑘 = (𝑋 ∘f + 𝑌))) |
16 | 15 | ifbid 4482 |
. . . 4
⊢ (𝑦 = 𝑘 → if(𝑦 = (𝑋 ∘f + 𝑌), 1 , 0 ) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
17 | 16 | cbvmptv 5186 |
. . 3
⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), 1 , 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
18 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
19 | 18 | snssd 4742 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → {𝑋} ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
20 | 19 | resmptd 5941 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋}) = (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))) |
21 | 20 | oveq2d 7283 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))))) |
22 | 9 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
23 | | ringmnd 19803 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑅 ∈ Mnd) |
25 | 10 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑋 ∈ 𝐷) |
26 | | iftrue 4465 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1 , 0 ) = 1 ) |
27 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) |
28 | 7 | fvexi 6780 |
. . . . . . . . . . . . 13
⊢ 1 ∈
V |
29 | 26, 27, 28 | fvmpt 6867 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐷 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 ) |
30 | 25, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 ) |
31 | | ssrab2 4012 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ⊆ 𝐷 |
32 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
33 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} = {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} |
34 | 5, 33 | psrbagconcl 21147 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝐷 ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑋) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
35 | 32, 18, 34 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑋) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
36 | 31, 35 | sselid 3918 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑋) ∈ 𝐷) |
37 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑘 ∘f − 𝑋) → (𝑦 = 𝑌 ↔ (𝑘 ∘f − 𝑋) = 𝑌)) |
38 | 37 | ifbid 4482 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑘 ∘f − 𝑋) → if(𝑦 = 𝑌, 1 , 0 ) = if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 )) |
39 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) |
40 | 6 | fvexi 6780 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
41 | 28, 40 | ifex 4509 |
. . . . . . . . . . . . 13
⊢ if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 ) ∈
V |
42 | 38, 39, 41 | fvmpt 6867 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∘f −
𝑋) ∈ 𝐷 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋)) = if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 )) |
43 | 36, 42 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋)) = if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 )) |
44 | 30, 43 | oveq12d 7285 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋))) = ( 1 (.r‘𝑅)if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 ))) |
45 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘𝑅) |
46 | 45, 7 | ringidcl 19817 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
47 | 45, 6 | ring0cl 19818 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
48 | 46, 47 | ifcld 4505 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) |
49 | 22, 48 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) |
50 | 45, 3, 7 | ringlidm 19820 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅)if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 )) = if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 )) |
51 | 22, 49, 50 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ( 1 (.r‘𝑅)if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 )) = if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 )) |
52 | 5 | psrbagf 21131 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ 𝐷 → 𝑘:𝐼⟶ℕ0) |
53 | 32, 52 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑘:𝐼⟶ℕ0) |
54 | 53 | ffvelrnda 6953 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑘‘𝑧) ∈
ℕ0) |
55 | 10 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 ∈ 𝐷) |
56 | 5 | psrbagf 21131 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∈ 𝐷 → 𝑋:𝐼⟶ℕ0) |
57 | 55, 56 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋:𝐼⟶ℕ0) |
58 | 57 | ffvelrnda 6953 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ∈
ℕ0) |
59 | 58 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ∈
ℕ0) |
60 | 5 | psrbagf 21131 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑌 ∈ 𝐷 → 𝑌:𝐼⟶ℕ0) |
61 | 12, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑌:𝐼⟶ℕ0) |
62 | 61 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑌:𝐼⟶ℕ0) |
63 | 62 | ffvelrnda 6953 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑌‘𝑧) ∈
ℕ0) |
64 | 63 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑌‘𝑧) ∈
ℕ0) |
65 | | nn0cn 12253 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘‘𝑧) ∈ ℕ0 → (𝑘‘𝑧) ∈ ℂ) |
66 | | nn0cn 12253 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋‘𝑧) ∈ ℕ0 → (𝑋‘𝑧) ∈ ℂ) |
67 | | nn0cn 12253 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑌‘𝑧) ∈ ℕ0 → (𝑌‘𝑧) ∈ ℂ) |
68 | | subadd 11234 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘‘𝑧) ∈ ℂ ∧ (𝑋‘𝑧) ∈ ℂ ∧ (𝑌‘𝑧) ∈ ℂ) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧))) |
69 | 65, 66, 67, 68 | syl3an 1159 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘‘𝑧) ∈ ℕ0 ∧ (𝑋‘𝑧) ∈ ℕ0 ∧ (𝑌‘𝑧) ∈ ℕ0) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧))) |
70 | 54, 59, 64, 69 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧))) |
71 | | eqcom 2745 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧) ↔ (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧))) |
72 | 70, 71 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
73 | 72 | ralbidva 3120 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (∀𝑧 ∈ 𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ∀𝑧 ∈ 𝐼 (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
74 | | mpteqb 6886 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) ∈ V → ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)) ↔ ∀𝑧 ∈ 𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧))) |
75 | | ovexd 7302 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐼 → ((𝑘‘𝑧) − (𝑋‘𝑧)) ∈ V) |
76 | 74, 75 | mprg 3078 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)) ↔ ∀𝑧 ∈ 𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧)) |
77 | | mpteqb 6886 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
𝐼 (𝑘‘𝑧) ∈ V → ((𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))) ↔ ∀𝑧 ∈ 𝐼 (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
78 | | fvexd 6781 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐼 → (𝑘‘𝑧) ∈ V) |
79 | 77, 78 | mprg 3078 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))) ↔ ∀𝑧 ∈ 𝐼 (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧))) |
80 | 73, 76, 79 | 3bitr4g 314 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)) ↔ (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))))) |
81 | 8 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝐼 ∈ 𝑊) |
82 | 53 | feqmptd 6829 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑘 = (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧))) |
83 | 57 | feqmptd 6829 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 = (𝑧 ∈ 𝐼 ↦ (𝑋‘𝑧))) |
84 | 83 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑋 = (𝑧 ∈ 𝐼 ↦ (𝑋‘𝑧))) |
85 | 81, 54, 59, 82, 84 | offval2 7543 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑋) = (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧)))) |
86 | 62 | feqmptd 6829 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑌 = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧))) |
87 | 86 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑌 = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧))) |
88 | 85, 87 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑘 ∘f − 𝑋) = 𝑌 ↔ (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)))) |
89 | 8 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
90 | 89, 58, 63, 83, 86 | offval2 7543 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑋 ∘f + 𝑌) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
91 | 90 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑋 ∘f + 𝑌) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
92 | 82, 91 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 = (𝑋 ∘f + 𝑌) ↔ (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))))) |
93 | 80, 88, 92 | 3bitr4d 311 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑘 ∘f − 𝑋) = 𝑌 ↔ 𝑘 = (𝑋 ∘f + 𝑌))) |
94 | 93 | ifbid 4482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 ) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
95 | 44, 51, 94 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋))) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
96 | 94, 49 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 ) ∈ (Base‘𝑅)) |
97 | 95, 96 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋))) ∈
(Base‘𝑅)) |
98 | | fveq2 6766 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑋 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)) |
99 | | oveq2 7275 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑋 → (𝑘 ∘f − 𝑗) = (𝑘 ∘f − 𝑋)) |
100 | 99 | fveq2d 6770 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑋 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋))) |
101 | 98, 100 | oveq12d 7285 |
. . . . . . . . 9
⊢ (𝑗 = 𝑋 → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋)))) |
102 | 45, 101 | gsumsn 19565 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ 𝑋 ∈ 𝐷 ∧ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋))) ∈
(Base‘𝑅)) →
(𝑅
Σg (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))) = (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋)))) |
103 | 24, 25, 97, 102 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))) = (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋)))) |
104 | 21, 103, 95 | 3eqtrd 2782 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
105 | 6 | gsum0 18378 |
. . . . . . 7
⊢ (𝑅 Σg
∅) = 0 |
106 | | disjsn 4647 |
. . . . . . . . 9
⊢ (({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
107 | 9 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
108 | 1, 45, 2, 5, 11 | mplelf 21214 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
109 | 108 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
110 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
111 | 31, 110 | sselid 3918 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑗 ∈ 𝐷) |
112 | 109, 111 | ffvelrnd 6954 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅)) |
113 | 1, 45, 2, 5, 13 | mplelf 21214 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
114 | 113 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
115 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
116 | 5, 33 | psrbagconcl 21147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝐷 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑗) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
117 | 115, 110,
116 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑗) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
118 | 31, 117 | sselid 3918 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑗) ∈ 𝐷) |
119 | 114, 118 | ffvelrnd 6954 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)) ∈
(Base‘𝑅)) |
120 | 45, 3 | ringcl 19810 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅) ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)) ∈
(Base‘𝑅)) →
(((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) ∈
(Base‘𝑅)) |
121 | 107, 112,
119, 120 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) ∈
(Base‘𝑅)) |
122 | 121 | fmpttd 6981 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}⟶(Base‘𝑅)) |
123 | | ffn 6592 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}⟶(Base‘𝑅) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) Fn {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
124 | | fnresdisj 6544 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) Fn {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} → (({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋}) = ∅)) |
125 | 122, 123,
124 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋}) = ∅)) |
126 | 125 | biimpa 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∩ {𝑋}) = ∅) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋}) = ∅) |
127 | 106, 126 | sylan2br 595 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋}) = ∅) |
128 | 127 | oveq2d 7283 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = (𝑅 Σg
∅)) |
129 | | breq1 5076 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑥 ∘r ≤ (𝑋 ∘f + 𝑌) ↔ 𝑋 ∘r ≤ (𝑋 ∘f + 𝑌))) |
130 | 58 | nn0red 12304 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ∈ ℝ) |
131 | | nn0addge1 12289 |
. . . . . . . . . . . . . 14
⊢ (((𝑋‘𝑧) ∈ ℝ ∧ (𝑌‘𝑧) ∈ ℕ0) → (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧))) |
132 | 130, 63, 131 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧))) |
133 | 132 | ralrimiva 3108 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ∀𝑧 ∈ 𝐼 (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧))) |
134 | | ovexd 7302 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → ((𝑋‘𝑧) + (𝑌‘𝑧)) ∈ V) |
135 | 89, 58, 134, 83, 90 | ofrfval2 7544 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑋 ∘r ≤ (𝑋 ∘f + 𝑌) ↔ ∀𝑧 ∈ 𝐼 (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
136 | 133, 135 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 ∘r ≤ (𝑋 ∘f + 𝑌)) |
137 | 129, 55, 136 | elrabd 3625 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝑋 ∘f + 𝑌)}) |
138 | | breq2 5077 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑋 ∘f + 𝑌) → (𝑥 ∘r ≤ 𝑘 ↔ 𝑥 ∘r ≤ (𝑋 ∘f + 𝑌))) |
139 | 138 | rabbidv 3411 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑋 ∘f + 𝑌) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} = {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝑋 ∘f + 𝑌)}) |
140 | 139 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑋 ∘f + 𝑌) → (𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↔ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝑋 ∘f + 𝑌)})) |
141 | 137, 140 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑘 = (𝑋 ∘f + 𝑌) → 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘})) |
142 | 141 | con3dimp 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ¬ 𝑘 = (𝑋 ∘f + 𝑌)) |
143 | 142 | iffalsed 4470 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 ) = 0 ) |
144 | 105, 128,
143 | 3eqtr4a 2804 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
145 | 104, 144 | pm2.61dan 810 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
146 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ Ring) |
147 | | ringcmn 19830 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
148 | 146, 147 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ CMnd) |
149 | 5 | psrbaglefi 21145 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐷 → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∈ Fin) |
150 | 149 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∈ Fin) |
151 | | ssdif 4073 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ⊆ 𝐷 → ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋})) |
152 | 31, 151 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋}) |
153 | 152 | sseli 3916 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋}) → 𝑗 ∈ (𝐷 ∖ {𝑋})) |
154 | 108 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
155 | | eldifsni 4723 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦 ≠ 𝑋) |
156 | 155 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦 ≠ 𝑋) |
157 | 156 | neneqd 2948 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋) |
158 | 157 | iffalsed 4470 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 ) |
159 | | ovex 7300 |
. . . . . . . . . . . . . 14
⊢
(ℕ0 ↑m 𝐼) ∈ V |
160 | 5, 159 | rabex2 5256 |
. . . . . . . . . . . . 13
⊢ 𝐷 ∈ V |
161 | 160 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐷 ∈ V) |
162 | 158, 161 | suppss2 8003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋}) |
163 | 40 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 0 ∈ V) |
164 | 154, 162,
161, 163 | suppssr 7999 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ (𝐷 ∖ {𝑋})) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 ) |
165 | 153, 164 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋})) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 ) |
166 | 165 | oveq1d 7282 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋})) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = ( 0 (.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) |
167 | | eldifi 4060 |
. . . . . . . . 9
⊢ (𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋}) → 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
168 | 45, 3, 6 | ringlz 19836 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)) ∈
(Base‘𝑅)) → (
0
(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = 0 ) |
169 | 107, 119,
168 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ( 0 (.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = 0 ) |
170 | 167, 169 | sylan2 593 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋})) → ( 0 (.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = 0 ) |
171 | 166, 170 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋})) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = 0 ) |
172 | 160 | rabex 5254 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∈ V |
173 | 172 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∈ V) |
174 | 171, 173 | suppss2 8003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) supp 0 ) ⊆
{𝑋}) |
175 | 160 | mptrabex 7093 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∈
V |
176 | | funmpt 6464 |
. . . . . . . . 9
⊢ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) |
177 | 175, 176,
40 | 3pm3.2i 1338 |
. . . . . . . 8
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∈ V ∧ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∧ 0 ∈
V) |
178 | 177 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∈ V ∧ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∧ 0 ∈
V)) |
179 | | snfi 8821 |
. . . . . . . 8
⊢ {𝑋} ∈ Fin |
180 | 179 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑋} ∈ Fin) |
181 | | suppssfifsupp 9130 |
. . . . . . 7
⊢ ((((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∈ V ∧ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∧ 0 ∈ V)
∧ ({𝑋} ∈ Fin ∧
((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) supp 0 ) ⊆
{𝑋})) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) finSupp 0
) |
182 | 178, 180,
174, 181 | syl12anc 834 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) finSupp 0
) |
183 | 45, 6, 148, 150, 122, 174, 182 | gsumres 19524 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))))) |
184 | 145, 183 | eqtr3d 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 ) = (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))))) |
185 | 184 | mpteq2dva 5173 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))))) |
186 | 17, 185 | eqtrid 2790 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), 1 , 0 )) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))))) |
187 | 14, 186 | eqtr4d 2781 |
1
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), 1 , 0 ))) |