MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmonmul Structured version   Visualization version   GIF version

Theorem mplmonmul 21147
Description: The product of two monomials adds the exponent vectors together. For example, the product of (𝑥↑2)(𝑦↑2) with (𝑦↑1)(𝑧↑3) is (𝑥↑2)(𝑦↑3)(𝑧↑3), where the exponent vectors ⟨2, 2, 0⟩ and ⟨0, 1, 3⟩ are added to give ⟨2, 3, 3⟩. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplmon.s 𝑃 = (𝐼 mPoly 𝑅)
mplmon.b 𝐵 = (Base‘𝑃)
mplmon.z 0 = (0g𝑅)
mplmon.o 1 = (1r𝑅)
mplmon.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon.i (𝜑𝐼𝑊)
mplmon.r (𝜑𝑅 ∈ Ring)
mplmon.x (𝜑𝑋𝐷)
mplmonmul.t · = (.r𝑃)
mplmonmul.x (𝜑𝑌𝐷)
Assertion
Ref Expression
mplmonmul (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )))
Distinct variable groups:   𝑦,𝐷   𝑓,𝐼   𝜑,𝑦   𝑦,𝑓,𝑋   𝑦, 0   𝑦, 1   𝑦,𝑅   𝑓,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   · (𝑦,𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   0 (𝑓)

Proof of Theorem mplmonmul
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplmon.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
2 mplmon.b . . 3 𝐵 = (Base‘𝑃)
3 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
4 mplmonmul.t . . 3 · = (.r𝑃)
5 mplmon.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
6 mplmon.z . . . 4 0 = (0g𝑅)
7 mplmon.o . . . 4 1 = (1r𝑅)
8 mplmon.i . . . 4 (𝜑𝐼𝑊)
9 mplmon.r . . . 4 (𝜑𝑅 ∈ Ring)
10 mplmon.x . . . 4 (𝜑𝑋𝐷)
111, 2, 6, 7, 5, 8, 9, 10mplmon 21146 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
12 mplmonmul.x . . . 4 (𝜑𝑌𝐷)
131, 2, 6, 7, 5, 8, 9, 12mplmon 21146 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) ∈ 𝐵)
141, 2, 3, 4, 5, 11, 13mplmul 21125 . 2 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))))
15 eqeq1 2742 . . . . 5 (𝑦 = 𝑘 → (𝑦 = (𝑋f + 𝑌) ↔ 𝑘 = (𝑋f + 𝑌)))
1615ifbid 4479 . . . 4 (𝑦 = 𝑘 → if(𝑦 = (𝑋f + 𝑌), 1 , 0 ) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
1716cbvmptv 5183 . . 3 (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
18 simpr 484 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑋 ∈ {𝑥𝐷𝑥r𝑘})
1918snssd 4739 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → {𝑋} ⊆ {𝑥𝐷𝑥r𝑘})
2019resmptd 5937 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))
2120oveq2d 7271 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))))
229ad2antrr 722 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑅 ∈ Ring)
23 ringmnd 19708 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2422, 23syl 17 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑅 ∈ Mnd)
2510ad2antrr 722 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑋𝐷)
26 iftrue 4462 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1 , 0 ) = 1 )
27 eqid 2738 . . . . . . . . . . . . 13 (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))
287fvexi 6770 . . . . . . . . . . . . 13 1 ∈ V
2926, 27, 28fvmpt 6857 . . . . . . . . . . . 12 (𝑋𝐷 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 )
3025, 29syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 )
31 ssrab2 4009 . . . . . . . . . . . . 13 {𝑥𝐷𝑥r𝑘} ⊆ 𝐷
32 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘𝐷)
33 eqid 2738 . . . . . . . . . . . . . . 15 {𝑥𝐷𝑥r𝑘} = {𝑥𝐷𝑥r𝑘}
345, 33psrbagconcl 21047 . . . . . . . . . . . . . 14 ((𝑘𝐷𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) ∈ {𝑥𝐷𝑥r𝑘})
3532, 18, 34syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) ∈ {𝑥𝐷𝑥r𝑘})
3631, 35sselid 3915 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) ∈ 𝐷)
37 eqeq1 2742 . . . . . . . . . . . . . 14 (𝑦 = (𝑘f𝑋) → (𝑦 = 𝑌 ↔ (𝑘f𝑋) = 𝑌))
3837ifbid 4479 . . . . . . . . . . . . 13 (𝑦 = (𝑘f𝑋) → if(𝑦 = 𝑌, 1 , 0 ) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
39 eqid 2738 . . . . . . . . . . . . 13 (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))
406fvexi 6770 . . . . . . . . . . . . . 14 0 ∈ V
4128, 40ifex 4506 . . . . . . . . . . . . 13 if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ V
4238, 39, 41fvmpt 6857 . . . . . . . . . . . 12 ((𝑘f𝑋) ∈ 𝐷 → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋)) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
4336, 42syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋)) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
4430, 43oveq12d 7273 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) = ( 1 (.r𝑅)if((𝑘f𝑋) = 𝑌, 1 , 0 )))
45 eqid 2738 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
4645, 7ringidcl 19722 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
4745, 6ring0cl 19723 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
4846, 47ifcld 4502 . . . . . . . . . . . 12 (𝑅 ∈ Ring → if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅))
4922, 48syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅))
5045, 3, 7ringlidm 19725 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)if((𝑘f𝑋) = 𝑌, 1 , 0 )) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
5122, 49, 50syl2anc 583 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ( 1 (.r𝑅)if((𝑘f𝑋) = 𝑌, 1 , 0 )) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
525psrbagf 21031 . . . . . . . . . . . . . . . . . 18 (𝑘𝐷𝑘:𝐼⟶ℕ0)
5332, 52syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘:𝐼⟶ℕ0)
5453ffvelrnda 6943 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
5510adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝑋𝐷)
565psrbagf 21031 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐷𝑋:𝐼⟶ℕ0)
5755, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑋:𝐼⟶ℕ0)
5857ffvelrnda 6943 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
5958adantlr 711 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
605psrbagf 21031 . . . . . . . . . . . . . . . . . . . 20 (𝑌𝐷𝑌:𝐼⟶ℕ0)
6112, 60syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌:𝐼⟶ℕ0)
6261adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑌:𝐼⟶ℕ0)
6362ffvelrnda 6943 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
6463adantlr 711 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
65 nn0cn 12173 . . . . . . . . . . . . . . . . 17 ((𝑘𝑧) ∈ ℕ0 → (𝑘𝑧) ∈ ℂ)
66 nn0cn 12173 . . . . . . . . . . . . . . . . 17 ((𝑋𝑧) ∈ ℕ0 → (𝑋𝑧) ∈ ℂ)
67 nn0cn 12173 . . . . . . . . . . . . . . . . 17 ((𝑌𝑧) ∈ ℕ0 → (𝑌𝑧) ∈ ℂ)
68 subadd 11154 . . . . . . . . . . . . . . . . 17 (((𝑘𝑧) ∈ ℂ ∧ (𝑋𝑧) ∈ ℂ ∧ (𝑌𝑧) ∈ ℂ) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
6965, 66, 67, 68syl3an 1158 . . . . . . . . . . . . . . . 16 (((𝑘𝑧) ∈ ℕ0 ∧ (𝑋𝑧) ∈ ℕ0 ∧ (𝑌𝑧) ∈ ℕ0) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
7054, 59, 64, 69syl3anc 1369 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
71 eqcom 2745 . . . . . . . . . . . . . . 15 (((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧) ↔ (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧)))
7270, 71bitrdi 286 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
7372ralbidva 3119 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
74 mpteqb 6876 . . . . . . . . . . . . . 14 (∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) ∈ V → ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ ∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧)))
75 ovexd 7290 . . . . . . . . . . . . . 14 (𝑧𝐼 → ((𝑘𝑧) − (𝑋𝑧)) ∈ V)
7674, 75mprg 3077 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ ∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧))
77 mpteqb 6876 . . . . . . . . . . . . . 14 (∀𝑧𝐼 (𝑘𝑧) ∈ V → ((𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
78 fvexd 6771 . . . . . . . . . . . . . 14 (𝑧𝐼 → (𝑘𝑧) ∈ V)
7977, 78mprg 3077 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧)))
8073, 76, 793bitr4g 313 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ (𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧)))))
818ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝐼𝑊)
8253feqmptd 6819 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘 = (𝑧𝐼 ↦ (𝑘𝑧)))
8357feqmptd 6819 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐷) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
8483adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
8581, 54, 59, 82, 84offval2 7531 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) = (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))))
8662feqmptd 6819 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
8786adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
8885, 87eqeq12d 2754 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑘f𝑋) = 𝑌 ↔ (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧))))
898adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐷) → 𝐼𝑊)
9089, 58, 63, 83, 86offval2 7531 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → (𝑋f + 𝑌) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))))
9190adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑋f + 𝑌) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))))
9282, 91eqeq12d 2754 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘 = (𝑋f + 𝑌) ↔ (𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧)))))
9380, 88, 923bitr4d 310 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑘f𝑋) = 𝑌𝑘 = (𝑋f + 𝑌)))
9493ifbid 4479 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if((𝑘f𝑋) = 𝑌, 1 , 0 ) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
9544, 51, 943eqtrd 2782 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
9694, 49eqeltrrd 2840 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if(𝑘 = (𝑋f + 𝑌), 1 , 0 ) ∈ (Base‘𝑅))
9795, 96eqeltrd 2839 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) ∈ (Base‘𝑅))
98 fveq2 6756 . . . . . . . . . 10 (𝑗 = 𝑋 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋))
99 oveq2 7263 . . . . . . . . . . 11 (𝑗 = 𝑋 → (𝑘f𝑗) = (𝑘f𝑋))
10099fveq2d 6760 . . . . . . . . . 10 (𝑗 = 𝑋 → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) = ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋)))
10198, 100oveq12d 7273 . . . . . . . . 9 (𝑗 = 𝑋 → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))))
10245, 101gsumsn 19470 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑋𝐷 ∧ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))))
10324, 25, 97, 102syl3anc 1369 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))))
10421, 103, 953eqtrd 2782 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
1056gsum0 18283 . . . . . . 7 (𝑅 Σg ∅) = 0
106 disjsn 4644 . . . . . . . . 9 (({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘})
1079ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑅 ∈ Ring)
1081, 45, 2, 5, 11mplelf 21114 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
109108ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
110 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑗 ∈ {𝑥𝐷𝑥r𝑘})
11131, 110sselid 3915 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑗𝐷)
112109, 111ffvelrnd 6944 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅))
1131, 45, 2, 5, 13mplelf 21114 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅))
114113ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅))
115 simplr 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘𝐷)
1165, 33psrbagconcl 21047 . . . . . . . . . . . . . . . 16 ((𝑘𝐷𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑗) ∈ {𝑥𝐷𝑥r𝑘})
117115, 110, 116syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑗) ∈ {𝑥𝐷𝑥r𝑘})
11831, 117sselid 3915 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑗) ∈ 𝐷)
119114, 118ffvelrnd 6944 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) ∈ (Base‘𝑅))
12045, 3ringcl 19715 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅) ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) ∈ (Base‘𝑅)) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) ∈ (Base‘𝑅))
121107, 112, 119, 120syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) ∈ (Base‘𝑅))
122121fmpttd 6971 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))):{𝑥𝐷𝑥r𝑘}⟶(Base‘𝑅))
123 ffn 6584 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))):{𝑥𝐷𝑥r𝑘}⟶(Base‘𝑅) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) Fn {𝑥𝐷𝑥r𝑘})
124 fnresdisj 6536 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) Fn {𝑥𝐷𝑥r𝑘} → (({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅))
125122, 123, 1243syl 18 . . . . . . . . . 10 ((𝜑𝑘𝐷) → (({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅))
126125biimpa 476 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ ({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅)
127106, 126sylan2br 594 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅)
128127oveq2d 7271 . . . . . . 7 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = (𝑅 Σg ∅))
129 breq1 5073 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥r ≤ (𝑋f + 𝑌) ↔ 𝑋r ≤ (𝑋f + 𝑌)))
13058nn0red 12224 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℝ)
131 nn0addge1 12209 . . . . . . . . . . . . . 14 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℕ0) → (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
132130, 63, 131syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
133132ralrimiva 3107 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
134 ovexd 7290 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → ((𝑋𝑧) + (𝑌𝑧)) ∈ V)
13589, 58, 134, 83, 90ofrfval2 7532 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → (𝑋r ≤ (𝑋f + 𝑌) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧))))
136133, 135mpbird 256 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝑋r ≤ (𝑋f + 𝑌))
137129, 55, 136elrabd 3619 . . . . . . . . . 10 ((𝜑𝑘𝐷) → 𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝑋f + 𝑌)})
138 breq2 5074 . . . . . . . . . . . 12 (𝑘 = (𝑋f + 𝑌) → (𝑥r𝑘𝑥r ≤ (𝑋f + 𝑌)))
139138rabbidv 3404 . . . . . . . . . . 11 (𝑘 = (𝑋f + 𝑌) → {𝑥𝐷𝑥r𝑘} = {𝑥𝐷𝑥r ≤ (𝑋f + 𝑌)})
140139eleq2d 2824 . . . . . . . . . 10 (𝑘 = (𝑋f + 𝑌) → (𝑋 ∈ {𝑥𝐷𝑥r𝑘} ↔ 𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝑋f + 𝑌)}))
141137, 140syl5ibrcom 246 . . . . . . . . 9 ((𝜑𝑘𝐷) → (𝑘 = (𝑋f + 𝑌) → 𝑋 ∈ {𝑥𝐷𝑥r𝑘}))
142141con3dimp 408 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ¬ 𝑘 = (𝑋f + 𝑌))
143142iffalsed 4467 . . . . . . 7 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if(𝑘 = (𝑋f + 𝑌), 1 , 0 ) = 0 )
144105, 128, 1433eqtr4a 2805 . . . . . 6 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
145104, 144pm2.61dan 809 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
1469adantr 480 . . . . . . 7 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
147 ringcmn 19735 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
148146, 147syl 17 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
1495psrbaglefi 21045 . . . . . . 7 (𝑘𝐷 → {𝑥𝐷𝑥r𝑘} ∈ Fin)
150149adantl 481 . . . . . 6 ((𝜑𝑘𝐷) → {𝑥𝐷𝑥r𝑘} ∈ Fin)
151 ssdif 4070 . . . . . . . . . . . 12 ({𝑥𝐷𝑥r𝑘} ⊆ 𝐷 → ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋}))
15231, 151ax-mp 5 . . . . . . . . . . 11 ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋})
153152sseli 3913 . . . . . . . . . 10 (𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) → 𝑗 ∈ (𝐷 ∖ {𝑋}))
154108adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
155 eldifsni 4720 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦𝑋)
156155adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦𝑋)
157156neneqd 2947 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋)
158157iffalsed 4467 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 )
159 ovex 7288 . . . . . . . . . . . . . 14 (ℕ0m 𝐼) ∈ V
1605, 159rabex2 5253 . . . . . . . . . . . . 13 𝐷 ∈ V
161160a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → 𝐷 ∈ V)
162158, 161suppss2 7987 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})
16340a1i 11 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 0 ∈ V)
164154, 162, 161, 163suppssr 7983 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ (𝐷 ∖ {𝑋})) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 )
165153, 164sylan2 592 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 )
166165oveq1d 7270 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))
167 eldifi 4057 . . . . . . . . 9 (𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) → 𝑗 ∈ {𝑥𝐷𝑥r𝑘})
16845, 3, 6ringlz 19741 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
169107, 119, 168syl2anc 583 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
170167, 169sylan2 592 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
171166, 170eqtrd 2778 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
172160rabex 5251 . . . . . . . 8 {𝑥𝐷𝑥r𝑘} ∈ V
173172a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑥𝐷𝑥r𝑘} ∈ V)
174171, 173suppss2 7987 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) supp 0 ) ⊆ {𝑋})
175160mptrabex 7083 . . . . . . . . 9 (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V
176 funmpt 6456 . . . . . . . . 9 Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))
177175, 176, 403pm3.2i 1337 . . . . . . . 8 ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∧ 0 ∈ V)
178177a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∧ 0 ∈ V))
179 snfi 8788 . . . . . . . 8 {𝑋} ∈ Fin
180179a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑋} ∈ Fin)
181 suppssfifsupp 9073 . . . . . . 7 ((((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) supp 0 ) ⊆ {𝑋})) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) finSupp 0 )
182178, 180, 174, 181syl12anc 833 . . . . . 6 ((𝜑𝑘𝐷) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) finSupp 0 )
18345, 6, 148, 150, 122, 174, 182gsumres 19429 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))))
184145, 183eqtr3d 2780 . . . 4 ((𝜑𝑘𝐷) → if(𝑘 = (𝑋f + 𝑌), 1 , 0 ) = (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))))
185184mpteq2dva 5170 . . 3 (𝜑 → (𝑘𝐷 ↦ if(𝑘 = (𝑋f + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))))
18617, 185eqtrid 2790 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))))
18714, 186eqtr4d 2781 1 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  wss 3883  c0 4253  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153  ccnv 5579  cres 5582  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  r cofr 7510   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  cc 10800  cr 10801   + caddc 10805  cle 10941  cmin 11135  cn 11903  0cn0 12163  Basecbs 16840  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  CMndccmn 19301  1rcur 19652  Ringcrg 19698   mPoly cmpl 21019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-psr 21022  df-mpl 21024
This theorem is referenced by:  mplcoe3  21149  mplcoe5  21151  mplmon2mul  21187
  Copyright terms: Public domain W3C validator