| Step | Hyp | Ref
| Expression |
| 1 | | mplmon.s |
. . 3
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 2 | | mplmon.b |
. . 3
⊢ 𝐵 = (Base‘𝑃) |
| 3 | | eqid 2737 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 4 | | mplmonmul.t |
. . 3
⊢ · =
(.r‘𝑃) |
| 5 | | mplmon.d |
. . 3
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 6 | | mplmon.z |
. . . 4
⊢ 0 =
(0g‘𝑅) |
| 7 | | mplmon.o |
. . . 4
⊢ 1 =
(1r‘𝑅) |
| 8 | | mplmon.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 9 | | mplmon.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 10 | | mplmon.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| 11 | 1, 2, 6, 7, 5, 8, 9, 10 | mplmon 22053 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) |
| 12 | | mplmonmul.x |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐷) |
| 13 | 1, 2, 6, 7, 5, 8, 9, 12 | mplmon 22053 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) ∈ 𝐵) |
| 14 | 1, 2, 3, 4, 5, 11,
13 | mplmul 22031 |
. 2
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))))) |
| 15 | | eqeq1 2741 |
. . . . 5
⊢ (𝑦 = 𝑘 → (𝑦 = (𝑋 ∘f + 𝑌) ↔ 𝑘 = (𝑋 ∘f + 𝑌))) |
| 16 | 15 | ifbid 4549 |
. . . 4
⊢ (𝑦 = 𝑘 → if(𝑦 = (𝑋 ∘f + 𝑌), 1 , 0 ) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
| 17 | 16 | cbvmptv 5255 |
. . 3
⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), 1 , 0 )) = (𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
| 18 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
| 19 | 18 | snssd 4809 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → {𝑋} ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
| 20 | 19 | resmptd 6058 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋}) = (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))) |
| 21 | 20 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))))) |
| 22 | 9 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
| 23 | | ringmnd 20240 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑅 ∈ Mnd) |
| 25 | 10 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑋 ∈ 𝐷) |
| 26 | | iftrue 4531 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1 , 0 ) = 1 ) |
| 27 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) |
| 28 | 7 | fvexi 6920 |
. . . . . . . . . . . . 13
⊢ 1 ∈
V |
| 29 | 26, 27, 28 | fvmpt 7016 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐷 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 ) |
| 30 | 25, 29 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 ) |
| 31 | | ssrab2 4080 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ⊆ 𝐷 |
| 32 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
| 33 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} = {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} |
| 34 | 5, 33 | psrbagconcl 21947 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝐷 ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑋) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
| 35 | 32, 18, 34 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑋) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
| 36 | 31, 35 | sselid 3981 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑋) ∈ 𝐷) |
| 37 | | eqeq1 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑘 ∘f − 𝑋) → (𝑦 = 𝑌 ↔ (𝑘 ∘f − 𝑋) = 𝑌)) |
| 38 | 37 | ifbid 4549 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑘 ∘f − 𝑋) → if(𝑦 = 𝑌, 1 , 0 ) = if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 )) |
| 39 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) |
| 40 | 6 | fvexi 6920 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
V |
| 41 | 28, 40 | ifex 4576 |
. . . . . . . . . . . . 13
⊢ if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 ) ∈
V |
| 42 | 38, 39, 41 | fvmpt 7016 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∘f −
𝑋) ∈ 𝐷 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋)) = if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 )) |
| 43 | 36, 42 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋)) = if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 )) |
| 44 | 30, 43 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋))) = ( 1 (.r‘𝑅)if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 ))) |
| 45 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 46 | 45, 7 | ringidcl 20262 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
| 47 | 45, 6 | ring0cl 20264 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
| 48 | 46, 47 | ifcld 4572 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) |
| 49 | 22, 48 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) |
| 50 | 45, 3, 7 | ringlidm 20266 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) → ( 1 (.r‘𝑅)if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 )) = if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 )) |
| 51 | 22, 49, 50 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ( 1 (.r‘𝑅)if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 )) = if((𝑘 ∘f −
𝑋) = 𝑌, 1 , 0 )) |
| 52 | 5 | psrbagf 21938 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ 𝐷 → 𝑘:𝐼⟶ℕ0) |
| 53 | 32, 52 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑘:𝐼⟶ℕ0) |
| 54 | 53 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑘‘𝑧) ∈
ℕ0) |
| 55 | 10 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 ∈ 𝐷) |
| 56 | 5 | psrbagf 21938 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∈ 𝐷 → 𝑋:𝐼⟶ℕ0) |
| 57 | 55, 56 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋:𝐼⟶ℕ0) |
| 58 | 57 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ∈
ℕ0) |
| 59 | 58 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ∈
ℕ0) |
| 60 | 5 | psrbagf 21938 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑌 ∈ 𝐷 → 𝑌:𝐼⟶ℕ0) |
| 61 | 12, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑌:𝐼⟶ℕ0) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑌:𝐼⟶ℕ0) |
| 63 | 62 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑌‘𝑧) ∈
ℕ0) |
| 64 | 63 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (𝑌‘𝑧) ∈
ℕ0) |
| 65 | | nn0cn 12536 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘‘𝑧) ∈ ℕ0 → (𝑘‘𝑧) ∈ ℂ) |
| 66 | | nn0cn 12536 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋‘𝑧) ∈ ℕ0 → (𝑋‘𝑧) ∈ ℂ) |
| 67 | | nn0cn 12536 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑌‘𝑧) ∈ ℕ0 → (𝑌‘𝑧) ∈ ℂ) |
| 68 | | subadd 11511 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑘‘𝑧) ∈ ℂ ∧ (𝑋‘𝑧) ∈ ℂ ∧ (𝑌‘𝑧) ∈ ℂ) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧))) |
| 69 | 65, 66, 67, 68 | syl3an 1161 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘‘𝑧) ∈ ℕ0 ∧ (𝑋‘𝑧) ∈ ℕ0 ∧ (𝑌‘𝑧) ∈ ℕ0) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧))) |
| 70 | 54, 59, 64, 69 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧))) |
| 71 | | eqcom 2744 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋‘𝑧) + (𝑌‘𝑧)) = (𝑘‘𝑧) ↔ (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧))) |
| 72 | 70, 71 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) ∧ 𝑧 ∈ 𝐼) → (((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 73 | 72 | ralbidva 3176 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (∀𝑧 ∈ 𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧) ↔ ∀𝑧 ∈ 𝐼 (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 74 | | mpteqb 7035 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) ∈ V → ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)) ↔ ∀𝑧 ∈ 𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧))) |
| 75 | | ovexd 7466 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐼 → ((𝑘‘𝑧) − (𝑋‘𝑧)) ∈ V) |
| 76 | 74, 75 | mprg 3067 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)) ↔ ∀𝑧 ∈ 𝐼 ((𝑘‘𝑧) − (𝑋‘𝑧)) = (𝑌‘𝑧)) |
| 77 | | mpteqb 7035 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
𝐼 (𝑘‘𝑧) ∈ V → ((𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))) ↔ ∀𝑧 ∈ 𝐼 (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 78 | | fvexd 6921 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐼 → (𝑘‘𝑧) ∈ V) |
| 79 | 77, 78 | mprg 3067 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))) ↔ ∀𝑧 ∈ 𝐼 (𝑘‘𝑧) = ((𝑋‘𝑧) + (𝑌‘𝑧))) |
| 80 | 73, 76, 79 | 3bitr4g 314 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)) ↔ (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))))) |
| 81 | 8 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝐼 ∈ 𝑊) |
| 82 | 53 | feqmptd 6977 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑘 = (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧))) |
| 83 | 57 | feqmptd 6977 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 = (𝑧 ∈ 𝐼 ↦ (𝑋‘𝑧))) |
| 84 | 83 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑋 = (𝑧 ∈ 𝐼 ↦ (𝑋‘𝑧))) |
| 85 | 81, 54, 59, 82, 84 | offval2 7717 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑋) = (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧)))) |
| 86 | 62 | feqmptd 6977 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑌 = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧))) |
| 87 | 86 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑌 = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧))) |
| 88 | 85, 87 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑘 ∘f − 𝑋) = 𝑌 ↔ (𝑧 ∈ 𝐼 ↦ ((𝑘‘𝑧) − (𝑋‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧)))) |
| 89 | 8 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐼 ∈ 𝑊) |
| 90 | 89, 58, 63, 83, 86 | offval2 7717 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑋 ∘f + 𝑌) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 91 | 90 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑋 ∘f + 𝑌) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 92 | 82, 91 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 = (𝑋 ∘f + 𝑌) ↔ (𝑧 ∈ 𝐼 ↦ (𝑘‘𝑧)) = (𝑧 ∈ 𝐼 ↦ ((𝑋‘𝑧) + (𝑌‘𝑧))))) |
| 93 | 80, 88, 92 | 3bitr4d 311 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑘 ∘f − 𝑋) = 𝑌 ↔ 𝑘 = (𝑋 ∘f + 𝑌))) |
| 94 | 93 | ifbid 4549 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → if((𝑘 ∘f − 𝑋) = 𝑌, 1 , 0 ) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
| 95 | 44, 51, 94 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋))) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
| 96 | 94, 49 | eqeltrrd 2842 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 ) ∈ (Base‘𝑅)) |
| 97 | 95, 96 | eqeltrd 2841 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋))) ∈
(Base‘𝑅)) |
| 98 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑋 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)) |
| 99 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑋 → (𝑘 ∘f − 𝑗) = (𝑘 ∘f − 𝑋)) |
| 100 | 99 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑋 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)) = ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋))) |
| 101 | 98, 100 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑗 = 𝑋 → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋)))) |
| 102 | 45, 101 | gsumsn 19972 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ 𝑋 ∈ 𝐷 ∧ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋))) ∈
(Base‘𝑅)) →
(𝑅
Σg (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))) = (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋)))) |
| 103 | 24, 25, 97, 102 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))) = (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑋)))) |
| 104 | 21, 103, 95 | 3eqtrd 2781 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
| 105 | 6 | gsum0 18697 |
. . . . . . 7
⊢ (𝑅 Σg
∅) = 0 |
| 106 | | disjsn 4711 |
. . . . . . . . 9
⊢ (({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
| 107 | 9 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑅 ∈ Ring) |
| 108 | 1, 45, 2, 5, 11 | mplelf 22018 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 109 | 108 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 110 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
| 111 | 31, 110 | sselid 3981 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑗 ∈ 𝐷) |
| 112 | 109, 111 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅)) |
| 113 | 1, 45, 2, 5, 13 | mplelf 22018 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 114 | 113 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 115 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
| 116 | 5, 33 | psrbagconcl 21947 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ 𝐷 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑗) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
| 117 | 115, 110,
116 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑗) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
| 118 | 31, 117 | sselid 3981 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑘 ∘f − 𝑗) ∈ 𝐷) |
| 119 | 114, 118 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)) ∈
(Base‘𝑅)) |
| 120 | 45, 3 | ringcl 20247 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅) ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)) ∈
(Base‘𝑅)) →
(((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) ∈
(Base‘𝑅)) |
| 121 | 107, 112,
119, 120 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) ∈
(Base‘𝑅)) |
| 122 | 121 | fmpttd 7135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}⟶(Base‘𝑅)) |
| 123 | | ffn 6736 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}⟶(Base‘𝑅) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) Fn {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
| 124 | | fnresdisj 6688 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) Fn {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} → (({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋}) = ∅)) |
| 125 | 122, 123,
124 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋}) = ∅)) |
| 126 | 125 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∩ {𝑋}) = ∅) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋}) = ∅) |
| 127 | 106, 126 | sylan2br 595 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋}) = ∅) |
| 128 | 127 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = (𝑅 Σg
∅)) |
| 129 | | breq1 5146 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝑥 ∘r ≤ (𝑋 ∘f + 𝑌) ↔ 𝑋 ∘r ≤ (𝑋 ∘f + 𝑌))) |
| 130 | 58 | nn0red 12588 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ∈ ℝ) |
| 131 | | nn0addge1 12572 |
. . . . . . . . . . . . . 14
⊢ (((𝑋‘𝑧) ∈ ℝ ∧ (𝑌‘𝑧) ∈ ℕ0) → (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧))) |
| 132 | 130, 63, 131 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧))) |
| 133 | 132 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ∀𝑧 ∈ 𝐼 (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧))) |
| 134 | | ovexd 7466 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑧 ∈ 𝐼) → ((𝑋‘𝑧) + (𝑌‘𝑧)) ∈ V) |
| 135 | 89, 58, 134, 83, 90 | ofrfval2 7718 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑋 ∘r ≤ (𝑋 ∘f + 𝑌) ↔ ∀𝑧 ∈ 𝐼 (𝑋‘𝑧) ≤ ((𝑋‘𝑧) + (𝑌‘𝑧)))) |
| 136 | 133, 135 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 ∘r ≤ (𝑋 ∘f + 𝑌)) |
| 137 | 129, 55, 136 | elrabd 3694 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝑋 ∘f + 𝑌)}) |
| 138 | | breq2 5147 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑋 ∘f + 𝑌) → (𝑥 ∘r ≤ 𝑘 ↔ 𝑥 ∘r ≤ (𝑋 ∘f + 𝑌))) |
| 139 | 138 | rabbidv 3444 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑋 ∘f + 𝑌) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} = {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝑋 ∘f + 𝑌)}) |
| 140 | 139 | eleq2d 2827 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑋 ∘f + 𝑌) → (𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↔ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝑋 ∘f + 𝑌)})) |
| 141 | 137, 140 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑘 = (𝑋 ∘f + 𝑌) → 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘})) |
| 142 | 141 | con3dimp 408 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ¬ 𝑘 = (𝑋 ∘f + 𝑌)) |
| 143 | 142 | iffalsed 4536 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 ) = 0 ) |
| 144 | 105, 128,
143 | 3eqtr4a 2803 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ ¬ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
| 145 | 104, 144 | pm2.61dan 813 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) |
| 146 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 147 | | ringcmn 20279 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 148 | 146, 147 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ CMnd) |
| 149 | 5 | psrbaglefi 21946 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐷 → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∈ Fin) |
| 150 | 149 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∈ Fin) |
| 151 | | ssdif 4144 |
. . . . . . . . . . . 12
⊢ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ⊆ 𝐷 → ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋})) |
| 152 | 31, 151 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋}) |
| 153 | 152 | sseli 3979 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋}) → 𝑗 ∈ (𝐷 ∖ {𝑋})) |
| 154 | 108 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅)) |
| 155 | | eldifsni 4790 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦 ≠ 𝑋) |
| 156 | 155 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦 ≠ 𝑋) |
| 157 | 156 | neneqd 2945 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋) |
| 158 | 157 | iffalsed 4536 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 ) |
| 159 | | ovex 7464 |
. . . . . . . . . . . . . 14
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 160 | 5, 159 | rabex2 5341 |
. . . . . . . . . . . . 13
⊢ 𝐷 ∈ V |
| 161 | 160 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝐷 ∈ V) |
| 162 | 158, 161 | suppss2 8225 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋}) |
| 163 | 40 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 0 ∈ V) |
| 164 | 154, 162,
161, 163 | suppssr 8220 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ (𝐷 ∖ {𝑋})) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 ) |
| 165 | 153, 164 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋})) → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 ) |
| 166 | 165 | oveq1d 7446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋})) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = ( 0 (.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) |
| 167 | | eldifi 4131 |
. . . . . . . . 9
⊢ (𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋}) → 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) |
| 168 | 45, 3, 6 | ringlz 20290 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)) ∈
(Base‘𝑅)) → (
0
(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = 0 ) |
| 169 | 107, 119,
168 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘}) → ( 0 (.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = 0 ) |
| 170 | 167, 169 | sylan2 593 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋})) → ( 0 (.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = 0 ) |
| 171 | 166, 170 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑗 ∈ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∖ {𝑋})) → (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))) = 0 ) |
| 172 | 160 | rabex 5339 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∈ V |
| 173 | 172 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ∈ V) |
| 174 | 171, 173 | suppss2 8225 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) supp 0 ) ⊆
{𝑋}) |
| 175 | 160 | mptrabex 7245 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∈
V |
| 176 | | funmpt 6604 |
. . . . . . . . 9
⊢ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) |
| 177 | 175, 176,
40 | 3pm3.2i 1340 |
. . . . . . . 8
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∈ V ∧ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∧ 0 ∈
V) |
| 178 | 177 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∈ V ∧ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∧ 0 ∈
V)) |
| 179 | | snfi 9083 |
. . . . . . . 8
⊢ {𝑋} ∈ Fin |
| 180 | 179 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑋} ∈ Fin) |
| 181 | | suppssfifsupp 9420 |
. . . . . . 7
⊢ ((((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∈ V ∧ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ∧ 0 ∈ V)
∧ ({𝑋} ∈ Fin ∧
((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) supp 0 ) ⊆
{𝑋})) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) finSupp 0
) |
| 182 | 178, 180,
174, 181 | syl12anc 837 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) finSupp 0
) |
| 183 | 45, 6, 148, 150, 122, 174, 182 | gsumres 19931 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))))) |
| 184 | 145, 183 | eqtr3d 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 ) = (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗)))))) |
| 185 | 184 | mpteq2dva 5242 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑋 ∘f + 𝑌), 1 , 0 )) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))))) |
| 186 | 17, 185 | eqtrid 2789 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), 1 , 0 )) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘} ↦ (((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r‘𝑅)((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘 ∘f −
𝑗))))))) |
| 187 | 14, 186 | eqtr4d 2780 |
1
⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), 1 , 0 ))) |