MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplmonmul Structured version   Visualization version   GIF version

Theorem mplmonmul 21994
Description: The product of two monomials adds the exponent vectors together. For example, the product of (𝑥↑2)(𝑦↑2) with (𝑦↑1)(𝑧↑3) is (𝑥↑2)(𝑦↑3)(𝑧↑3), where the exponent vectors ⟨2, 2, 0⟩ and ⟨0, 1, 3⟩ are added to give ⟨2, 3, 3⟩. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplmon.s 𝑃 = (𝐼 mPoly 𝑅)
mplmon.b 𝐵 = (Base‘𝑃)
mplmon.z 0 = (0g𝑅)
mplmon.o 1 = (1r𝑅)
mplmon.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmon.i (𝜑𝐼𝑊)
mplmon.r (𝜑𝑅 ∈ Ring)
mplmon.x (𝜑𝑋𝐷)
mplmonmul.t · = (.r𝑃)
mplmonmul.x (𝜑𝑌𝐷)
Assertion
Ref Expression
mplmonmul (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )))
Distinct variable groups:   𝑦,𝐷   𝑓,𝐼   𝜑,𝑦   𝑦,𝑓,𝑋   𝑦, 0   𝑦, 1   𝑦,𝑅   𝑓,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑓)   · (𝑦,𝑓)   1 (𝑓)   𝐼(𝑦)   𝑊(𝑦,𝑓)   0 (𝑓)

Proof of Theorem mplmonmul
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplmon.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
2 mplmon.b . . 3 𝐵 = (Base‘𝑃)
3 eqid 2735 . . 3 (.r𝑅) = (.r𝑅)
4 mplmonmul.t . . 3 · = (.r𝑃)
5 mplmon.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
6 mplmon.z . . . 4 0 = (0g𝑅)
7 mplmon.o . . . 4 1 = (1r𝑅)
8 mplmon.i . . . 4 (𝜑𝐼𝑊)
9 mplmon.r . . . 4 (𝜑𝑅 ∈ Ring)
10 mplmon.x . . . 4 (𝜑𝑋𝐷)
111, 2, 6, 7, 5, 8, 9, 10mplmon 21993 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵)
12 mplmonmul.x . . . 4 (𝜑𝑌𝐷)
131, 2, 6, 7, 5, 8, 9, 12mplmon 21993 . . 3 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) ∈ 𝐵)
141, 2, 3, 4, 5, 11, 13mplmul 21971 . 2 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))))
15 eqeq1 2739 . . . . 5 (𝑦 = 𝑘 → (𝑦 = (𝑋f + 𝑌) ↔ 𝑘 = (𝑋f + 𝑌)))
1615ifbid 4524 . . . 4 (𝑦 = 𝑘 → if(𝑦 = (𝑋f + 𝑌), 1 , 0 ) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
1716cbvmptv 5225 . . 3 (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
18 simpr 484 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑋 ∈ {𝑥𝐷𝑥r𝑘})
1918snssd 4785 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → {𝑋} ⊆ {𝑥𝐷𝑥r𝑘})
2019resmptd 6027 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))
2120oveq2d 7421 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))))
229ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑅 ∈ Ring)
23 ringmnd 20203 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2422, 23syl 17 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑅 ∈ Mnd)
2510ad2antrr 726 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑋𝐷)
26 iftrue 4506 . . . . . . . . . . . . 13 (𝑦 = 𝑋 → if(𝑦 = 𝑋, 1 , 0 ) = 1 )
27 eqid 2735 . . . . . . . . . . . . 13 (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))
287fvexi 6890 . . . . . . . . . . . . 13 1 ∈ V
2926, 27, 28fvmpt 6986 . . . . . . . . . . . 12 (𝑋𝐷 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 )
3025, 29syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋) = 1 )
31 ssrab2 4055 . . . . . . . . . . . . 13 {𝑥𝐷𝑥r𝑘} ⊆ 𝐷
32 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘𝐷)
33 eqid 2735 . . . . . . . . . . . . . . 15 {𝑥𝐷𝑥r𝑘} = {𝑥𝐷𝑥r𝑘}
345, 33psrbagconcl 21887 . . . . . . . . . . . . . 14 ((𝑘𝐷𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) ∈ {𝑥𝐷𝑥r𝑘})
3532, 18, 34syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) ∈ {𝑥𝐷𝑥r𝑘})
3631, 35sselid 3956 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) ∈ 𝐷)
37 eqeq1 2739 . . . . . . . . . . . . . 14 (𝑦 = (𝑘f𝑋) → (𝑦 = 𝑌 ↔ (𝑘f𝑋) = 𝑌))
3837ifbid 4524 . . . . . . . . . . . . 13 (𝑦 = (𝑘f𝑋) → if(𝑦 = 𝑌, 1 , 0 ) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
39 eqid 2735 . . . . . . . . . . . . 13 (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))
406fvexi 6890 . . . . . . . . . . . . . 14 0 ∈ V
4128, 40ifex 4551 . . . . . . . . . . . . 13 if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ V
4238, 39, 41fvmpt 6986 . . . . . . . . . . . 12 ((𝑘f𝑋) ∈ 𝐷 → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋)) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
4336, 42syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋)) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
4430, 43oveq12d 7423 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) = ( 1 (.r𝑅)if((𝑘f𝑋) = 𝑌, 1 , 0 )))
45 eqid 2735 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
4645, 7ringidcl 20225 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
4745, 6ring0cl 20227 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
4846, 47ifcld 4547 . . . . . . . . . . . 12 (𝑅 ∈ Ring → if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅))
4922, 48syl 17 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅))
5045, 3, 7ringlidm 20229 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ if((𝑘f𝑋) = 𝑌, 1 , 0 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)if((𝑘f𝑋) = 𝑌, 1 , 0 )) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
5122, 49, 50syl2anc 584 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ( 1 (.r𝑅)if((𝑘f𝑋) = 𝑌, 1 , 0 )) = if((𝑘f𝑋) = 𝑌, 1 , 0 ))
525psrbagf 21878 . . . . . . . . . . . . . . . . . 18 (𝑘𝐷𝑘:𝐼⟶ℕ0)
5332, 52syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘:𝐼⟶ℕ0)
5453ffvelcdmda 7074 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
5510adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝑋𝐷)
565psrbagf 21878 . . . . . . . . . . . . . . . . . . 19 (𝑋𝐷𝑋:𝐼⟶ℕ0)
5755, 56syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑋:𝐼⟶ℕ0)
5857ffvelcdmda 7074 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
5958adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
605psrbagf 21878 . . . . . . . . . . . . . . . . . . . 20 (𝑌𝐷𝑌:𝐼⟶ℕ0)
6112, 60syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑌:𝐼⟶ℕ0)
6261adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑌:𝐼⟶ℕ0)
6362ffvelcdmda 7074 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
6463adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
65 nn0cn 12511 . . . . . . . . . . . . . . . . 17 ((𝑘𝑧) ∈ ℕ0 → (𝑘𝑧) ∈ ℂ)
66 nn0cn 12511 . . . . . . . . . . . . . . . . 17 ((𝑋𝑧) ∈ ℕ0 → (𝑋𝑧) ∈ ℂ)
67 nn0cn 12511 . . . . . . . . . . . . . . . . 17 ((𝑌𝑧) ∈ ℕ0 → (𝑌𝑧) ∈ ℂ)
68 subadd 11485 . . . . . . . . . . . . . . . . 17 (((𝑘𝑧) ∈ ℂ ∧ (𝑋𝑧) ∈ ℂ ∧ (𝑌𝑧) ∈ ℂ) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
6965, 66, 67, 68syl3an 1160 . . . . . . . . . . . . . . . 16 (((𝑘𝑧) ∈ ℕ0 ∧ (𝑋𝑧) ∈ ℕ0 ∧ (𝑌𝑧) ∈ ℕ0) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
7054, 59, 64, 69syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧)))
71 eqcom 2742 . . . . . . . . . . . . . . 15 (((𝑋𝑧) + (𝑌𝑧)) = (𝑘𝑧) ↔ (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧)))
7270, 71bitrdi 287 . . . . . . . . . . . . . 14 ((((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) ∧ 𝑧𝐼) → (((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
7372ralbidva 3161 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
74 mpteqb 7005 . . . . . . . . . . . . . 14 (∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) ∈ V → ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ ∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧)))
75 ovexd 7440 . . . . . . . . . . . . . 14 (𝑧𝐼 → ((𝑘𝑧) − (𝑋𝑧)) ∈ V)
7674, 75mprg 3057 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ ∀𝑧𝐼 ((𝑘𝑧) − (𝑋𝑧)) = (𝑌𝑧))
77 mpteqb 7005 . . . . . . . . . . . . . 14 (∀𝑧𝐼 (𝑘𝑧) ∈ V → ((𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧))))
78 fvexd 6891 . . . . . . . . . . . . . 14 (𝑧𝐼 → (𝑘𝑧) ∈ V)
7977, 78mprg 3057 . . . . . . . . . . . . 13 ((𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))) ↔ ∀𝑧𝐼 (𝑘𝑧) = ((𝑋𝑧) + (𝑌𝑧)))
8073, 76, 793bitr4g 314 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧)) ↔ (𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧)))))
818ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝐼𝑊)
8253feqmptd 6947 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘 = (𝑧𝐼 ↦ (𝑘𝑧)))
8357feqmptd 6947 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐷) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
8483adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
8581, 54, 59, 82, 84offval2 7691 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑋) = (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))))
8662feqmptd 6947 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
8786adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
8885, 87eqeq12d 2751 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑘f𝑋) = 𝑌 ↔ (𝑧𝐼 ↦ ((𝑘𝑧) − (𝑋𝑧))) = (𝑧𝐼 ↦ (𝑌𝑧))))
898adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐷) → 𝐼𝑊)
9089, 58, 63, 83, 86offval2 7691 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐷) → (𝑋f + 𝑌) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))))
9190adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑋f + 𝑌) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧))))
9282, 91eqeq12d 2751 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘 = (𝑋f + 𝑌) ↔ (𝑧𝐼 ↦ (𝑘𝑧)) = (𝑧𝐼 ↦ ((𝑋𝑧) + (𝑌𝑧)))))
9380, 88, 923bitr4d 311 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑘f𝑋) = 𝑌𝑘 = (𝑋f + 𝑌)))
9493ifbid 4524 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if((𝑘f𝑋) = 𝑌, 1 , 0 ) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
9544, 51, 943eqtrd 2774 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
9694, 49eqeltrrd 2835 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if(𝑘 = (𝑋f + 𝑌), 1 , 0 ) ∈ (Base‘𝑅))
9795, 96eqeltrd 2834 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) ∈ (Base‘𝑅))
98 fveq2 6876 . . . . . . . . . 10 (𝑗 = 𝑋 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋))
99 oveq2 7413 . . . . . . . . . . 11 (𝑗 = 𝑋 → (𝑘f𝑗) = (𝑘f𝑋))
10099fveq2d 6880 . . . . . . . . . 10 (𝑗 = 𝑋 → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) = ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋)))
10198, 100oveq12d 7423 . . . . . . . . 9 (𝑗 = 𝑋 → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))))
10245, 101gsumsn 19935 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ 𝑋𝐷 ∧ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))) ∈ (Base‘𝑅)) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))))
10324, 25, 97, 102syl3anc 1373 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg (𝑗 ∈ {𝑋} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))) = (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑋)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑋))))
10421, 103, 953eqtrd 2774 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
1056gsum0 18662 . . . . . . 7 (𝑅 Σg ∅) = 0
106 disjsn 4687 . . . . . . . . 9 (({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘})
1079ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑅 ∈ Ring)
1081, 45, 2, 5, 11mplelf 21958 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
109108ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
110 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑗 ∈ {𝑥𝐷𝑥r𝑘})
11131, 110sselid 3956 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑗𝐷)
112109, 111ffvelcdmd 7075 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅))
1131, 45, 2, 5, 13mplelf 21958 . . . . . . . . . . . . . . 15 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅))
114113ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )):𝐷⟶(Base‘𝑅))
115 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → 𝑘𝐷)
1165, 33psrbagconcl 21887 . . . . . . . . . . . . . . . 16 ((𝑘𝐷𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑗) ∈ {𝑥𝐷𝑥r𝑘})
117115, 110, 116syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑗) ∈ {𝑥𝐷𝑥r𝑘})
11831, 117sselid 3956 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑘f𝑗) ∈ 𝐷)
119114, 118ffvelcdmd 7075 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) ∈ (Base‘𝑅))
12045, 3ringcl 20210 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) ∈ (Base‘𝑅) ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) ∈ (Base‘𝑅)) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) ∈ (Base‘𝑅))
121107, 112, 119, 120syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) ∈ (Base‘𝑅))
122121fmpttd 7105 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))):{𝑥𝐷𝑥r𝑘}⟶(Base‘𝑅))
123 ffn 6706 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))):{𝑥𝐷𝑥r𝑘}⟶(Base‘𝑅) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) Fn {𝑥𝐷𝑥r𝑘})
124 fnresdisj 6658 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) Fn {𝑥𝐷𝑥r𝑘} → (({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅))
125122, 123, 1243syl 18 . . . . . . . . . 10 ((𝜑𝑘𝐷) → (({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅ ↔ ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅))
126125biimpa 476 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ ({𝑥𝐷𝑥r𝑘} ∩ {𝑋}) = ∅) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅)
127106, 126sylan2br 595 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋}) = ∅)
128127oveq2d 7421 . . . . . . 7 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = (𝑅 Σg ∅))
129 breq1 5122 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥r ≤ (𝑋f + 𝑌) ↔ 𝑋r ≤ (𝑋f + 𝑌)))
13058nn0red 12563 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℝ)
131 nn0addge1 12547 . . . . . . . . . . . . . 14 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℕ0) → (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
132130, 63, 131syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
133132ralrimiva 3132 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧)))
134 ovexd 7440 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑧𝐼) → ((𝑋𝑧) + (𝑌𝑧)) ∈ V)
13589, 58, 134, 83, 90ofrfval2 7692 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → (𝑋r ≤ (𝑋f + 𝑌) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝑋𝑧) + (𝑌𝑧))))
136133, 135mpbird 257 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝑋r ≤ (𝑋f + 𝑌))
137129, 55, 136elrabd 3673 . . . . . . . . . 10 ((𝜑𝑘𝐷) → 𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝑋f + 𝑌)})
138 breq2 5123 . . . . . . . . . . . 12 (𝑘 = (𝑋f + 𝑌) → (𝑥r𝑘𝑥r ≤ (𝑋f + 𝑌)))
139138rabbidv 3423 . . . . . . . . . . 11 (𝑘 = (𝑋f + 𝑌) → {𝑥𝐷𝑥r𝑘} = {𝑥𝐷𝑥r ≤ (𝑋f + 𝑌)})
140139eleq2d 2820 . . . . . . . . . 10 (𝑘 = (𝑋f + 𝑌) → (𝑋 ∈ {𝑥𝐷𝑥r𝑘} ↔ 𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝑋f + 𝑌)}))
141137, 140syl5ibrcom 247 . . . . . . . . 9 ((𝜑𝑘𝐷) → (𝑘 = (𝑋f + 𝑌) → 𝑋 ∈ {𝑥𝐷𝑥r𝑘}))
142141con3dimp 408 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → ¬ 𝑘 = (𝑋f + 𝑌))
143142iffalsed 4511 . . . . . . 7 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → if(𝑘 = (𝑋f + 𝑌), 1 , 0 ) = 0 )
144105, 128, 1433eqtr4a 2796 . . . . . 6 (((𝜑𝑘𝐷) ∧ ¬ 𝑋 ∈ {𝑥𝐷𝑥r𝑘}) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
145104, 144pm2.61dan 812 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = if(𝑘 = (𝑋f + 𝑌), 1 , 0 ))
1469adantr 480 . . . . . . 7 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
147 ringcmn 20242 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
148146, 147syl 17 . . . . . 6 ((𝜑𝑘𝐷) → 𝑅 ∈ CMnd)
1495psrbaglefi 21886 . . . . . . 7 (𝑘𝐷 → {𝑥𝐷𝑥r𝑘} ∈ Fin)
150149adantl 481 . . . . . 6 ((𝜑𝑘𝐷) → {𝑥𝐷𝑥r𝑘} ∈ Fin)
151 ssdif 4119 . . . . . . . . . . . 12 ({𝑥𝐷𝑥r𝑘} ⊆ 𝐷 → ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋}))
15231, 151ax-mp 5 . . . . . . . . . . 11 ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) ⊆ (𝐷 ∖ {𝑋})
153152sseli 3954 . . . . . . . . . 10 (𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) → 𝑗 ∈ (𝐷 ∖ {𝑋}))
154108adantr 480 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → (𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )):𝐷⟶(Base‘𝑅))
155 eldifsni 4766 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐷 ∖ {𝑋}) → 𝑦𝑋)
156155adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → 𝑦𝑋)
157156neneqd 2937 . . . . . . . . . . . . 13 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → ¬ 𝑦 = 𝑋)
158157iffalsed 4511 . . . . . . . . . . . 12 (((𝜑𝑘𝐷) ∧ 𝑦 ∈ (𝐷 ∖ {𝑋})) → if(𝑦 = 𝑋, 1 , 0 ) = 0 )
159 ovex 7438 . . . . . . . . . . . . . 14 (ℕ0m 𝐼) ∈ V
1605, 159rabex2 5311 . . . . . . . . . . . . 13 𝐷 ∈ V
161160a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝐷) → 𝐷 ∈ V)
162158, 161suppss2 8199 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) supp 0 ) ⊆ {𝑋})
16340a1i 11 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 0 ∈ V)
164154, 162, 161, 163suppssr 8194 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ (𝐷 ∖ {𝑋})) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 )
165153, 164sylan2 593 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗) = 0 )
166165oveq1d 7420 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))
167 eldifi 4106 . . . . . . . . 9 (𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋}) → 𝑗 ∈ {𝑥𝐷𝑥r𝑘})
16845, 3, 6ringlz 20253 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)) ∈ (Base‘𝑅)) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
169107, 119, 168syl2anc 584 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ {𝑥𝐷𝑥r𝑘}) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
170167, 169sylan2 593 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → ( 0 (.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
171166, 170eqtrd 2770 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑗 ∈ ({𝑥𝐷𝑥r𝑘} ∖ {𝑋})) → (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))) = 0 )
172160rabex 5309 . . . . . . . 8 {𝑥𝐷𝑥r𝑘} ∈ V
173172a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑥𝐷𝑥r𝑘} ∈ V)
174171, 173suppss2 8199 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) supp 0 ) ⊆ {𝑋})
175160mptrabex 7217 . . . . . . . . 9 (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V
176 funmpt 6574 . . . . . . . . 9 Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))
177175, 176, 403pm3.2i 1340 . . . . . . . 8 ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∧ 0 ∈ V)
178177a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∧ 0 ∈ V))
179 snfi 9057 . . . . . . . 8 {𝑋} ∈ Fin
180179a1i 11 . . . . . . 7 ((𝜑𝑘𝐷) → {𝑋} ∈ Fin)
181 suppssfifsupp 9392 . . . . . . 7 ((((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ∧ 0 ∈ V) ∧ ({𝑋} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) supp 0 ) ⊆ {𝑋})) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) finSupp 0 )
182178, 180, 174, 181syl12anc 836 . . . . . 6 ((𝜑𝑘𝐷) → (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) finSupp 0 )
18345, 6, 148, 150, 122, 174, 182gsumres 19894 . . . . 5 ((𝜑𝑘𝐷) → (𝑅 Σg ((𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))) ↾ {𝑋})) = (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))))
184145, 183eqtr3d 2772 . . . 4 ((𝜑𝑘𝐷) → if(𝑘 = (𝑋f + 𝑌), 1 , 0 ) = (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗))))))
185184mpteq2dva 5214 . . 3 (𝜑 → (𝑘𝐷 ↦ if(𝑘 = (𝑋f + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))))
18617, 185eqtrid 2782 . 2 (𝜑 → (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )) = (𝑘𝐷 ↦ (𝑅 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑘} ↦ (((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 ))‘𝑗)(.r𝑅)((𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))‘(𝑘f𝑗)))))))
18714, 186eqtr4d 2773 1 (𝜑 → ((𝑦𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦𝐷 ↦ if(𝑦 = (𝑋f + 𝑌), 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cin 3925  wss 3926  c0 4308  ifcif 4500  {csn 4601   class class class wbr 5119  cmpt 5201  ccnv 5653  cres 5656  cima 5657  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669  r cofr 7670   supp csupp 8159  m cmap 8840  Fincfn 8959   finSupp cfsupp 9373  cc 11127  cr 11128   + caddc 11132  cle 11270  cmin 11466  cn 12240  0cn0 12501  Basecbs 17228  .rcmulr 17272  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  CMndccmn 19761  1rcur 20141  Ringcrg 20193   mPoly cmpl 21866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-tset 17290  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-psr 21869  df-mpl 21871
This theorem is referenced by:  mplcoe3  21996  mplcoe5  21998  mplmon2mul  22027
  Copyright terms: Public domain W3C validator