MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrnov Structured version   Visualization version   GIF version

Theorem fnrnov 7519
Description: The range of an operation expressed as a collection of the operation's values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
fnrnov (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧

Proof of Theorem fnrnov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fnrnfv 6881 . 2 (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤)})
2 fveq2 6822 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7349 . . . . . 6 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2784 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝑥𝐹𝑦))
54eqeq2d 2742 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (𝐹𝑤) ↔ 𝑧 = (𝑥𝐹𝑦)))
65rexxp 5782 . . 3 (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦))
76abbii 2798 . 2 {𝑧 ∣ ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)}
81, 7eqtrdi 2782 1 (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {cab 2709  wrex 3056  cop 4582   × cxp 5614  ran crn 5617   Fn wfn 6476  cfv 6481  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349
This theorem is referenced by:  ovelrn  7522
  Copyright terms: Public domain W3C validator