![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnrnov | Structured version Visualization version GIF version |
Description: The range of an operation expressed as a collection of the operation's values. (Contributed by NM, 29-Oct-2006.) |
Ref | Expression |
---|---|
fnrnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnfv 6952 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤)}) | |
2 | fveq2 6892 | . . . . . 6 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑤) = (𝐹‘⟨𝑥, 𝑦⟩)) | |
3 | df-ov 7412 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
4 | 2, 3 | eqtr4di 2791 | . . . . 5 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑤) = (𝑥𝐹𝑦)) |
5 | 4 | eqeq2d 2744 | . . . 4 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (𝐹‘𝑤) ↔ 𝑧 = (𝑥𝐹𝑦))) |
6 | 5 | rexxp 5843 | . . 3 ⊢ (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
7 | 6 | abbii 2803 | . 2 ⊢ {𝑧 ∣ ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤)} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)} |
8 | 1, 7 | eqtrdi 2789 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 {cab 2710 ∃wrex 3071 ⟨cop 4635 × cxp 5675 ran crn 5678 Fn wfn 6539 ‘cfv 6544 (class class class)co 7409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 df-ov 7412 |
This theorem is referenced by: ovelrn 7583 |
Copyright terms: Public domain | W3C validator |