![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnrnov | Structured version Visualization version GIF version |
Description: The range of an operation expressed as a collection of the operation's values. (Contributed by NM, 29-Oct-2006.) |
Ref | Expression |
---|---|
fnrnov | ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnfv 6958 | . 2 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤)}) | |
2 | fveq2 6897 | . . . . . 6 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑤) = (𝐹‘⟨𝑥, 𝑦⟩)) | |
3 | df-ov 7423 | . . . . . 6 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
4 | 2, 3 | eqtr4di 2786 | . . . . 5 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑤) = (𝑥𝐹𝑦)) |
5 | 4 | eqeq2d 2739 | . . . 4 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (𝐹‘𝑤) ↔ 𝑧 = (𝑥𝐹𝑦))) |
6 | 5 | rexxp 5845 | . . 3 ⊢ (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
7 | 6 | abbii 2798 | . 2 ⊢ {𝑧 ∣ ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤)} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)} |
8 | 1, 7 | eqtrdi 2784 | 1 ⊢ (𝐹 Fn (𝐴 × 𝐵) → ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 {cab 2705 ∃wrex 3067 ⟨cop 4635 × cxp 5676 ran crn 5679 Fn wfn 6543 ‘cfv 6548 (class class class)co 7420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-fv 6556 df-ov 7423 |
This theorem is referenced by: ovelrn 7597 |
Copyright terms: Public domain | W3C validator |