MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrnfv Structured version   Visualization version   GIF version

Theorem fnrnfv 6890
Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnrnfv (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fnrnfv
StepHypRef Expression
1 dffn5 6889 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
2 rneq 5882 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → ran 𝐹 = ran (𝑥𝐴 ↦ (𝐹𝑥)))
31, 2sylbi 217 . 2 (𝐹 Fn 𝐴 → ran 𝐹 = ran (𝑥𝐴 ↦ (𝐹𝑥)))
4 eqid 2733 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
54rnmpt 5903 . 2 ran (𝑥𝐴 ↦ (𝐹𝑥)) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
63, 5eqtrdi 2784 1 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {cab 2711  wrex 3057  cmpt 5176  ran crn 5622   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-fv 6497
This theorem is referenced by:  fvelrnb  6891  fniinfv  6909  dffo3  7044  dffo3f  7048  fniunfv  7190  fnrnov  7528  pwcfsdom  10485  hauscmplem  23341  madef  27817  grpoinvf  30533  fpwrelmapffslem  32739  cshwrnid  32971  meascnbl  34304  omssubadd  34385  fvineqsneu  37528  fvineqsneq  37529  tfsconcatrn  43499  rnfdmpr  47443  fargshiftfo  47604
  Copyright terms: Public domain W3C validator