Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnrnfv | Structured version Visualization version GIF version |
Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
fnrnfv | ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 6716 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
2 | rneq 5781 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
3 | 1, 2 | sylbi 220 | . 2 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
4 | eqid 2758 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) | |
5 | 4 | rnmpt 5800 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
6 | 3, 5 | eqtrdi 2809 | 1 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 {cab 2735 ∃wrex 3071 ↦ cmpt 5115 ran crn 5528 Fn wfn 6334 ‘cfv 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-iota 6298 df-fun 6341 df-fn 6342 df-fv 6347 |
This theorem is referenced by: fvelrnb 6718 fniinfv 6734 dffo3 6864 fniunfv 7003 fnrnov 7322 pwcfsdom 10048 hauscmplem 22111 grpoinvf 28419 fpwrelmapffslem 30595 cshwrnid 30761 meascnbl 31710 omssubadd 31790 madef 33626 fvineqsneu 35134 fvineqsneq 35135 dffo3f 42204 rnfdmpr 44233 fargshiftfo 44355 |
Copyright terms: Public domain | W3C validator |