| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnrnfv | Structured version Visualization version GIF version | ||
| Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| fnrnfv | ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn5 6889 | . . 3 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 2 | rneq 5882 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) → ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 4 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) | |
| 5 | 4 | rnmpt 5903 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
| 6 | 3, 5 | eqtrdi 2784 | 1 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cab 2711 ∃wrex 3057 ↦ cmpt 5176 ran crn 5622 Fn wfn 6484 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 |
| This theorem is referenced by: fvelrnb 6891 fniinfv 6909 dffo3 7044 dffo3f 7048 fniunfv 7190 fnrnov 7528 pwcfsdom 10485 hauscmplem 23341 madef 27817 grpoinvf 30533 fpwrelmapffslem 32739 cshwrnid 32971 meascnbl 34304 omssubadd 34385 fvineqsneu 37528 fvineqsneq 37529 tfsconcatrn 43499 rnfdmpr 47443 fargshiftfo 47604 |
| Copyright terms: Public domain | W3C validator |