MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrnfv Structured version   Visualization version   GIF version

Theorem fnrnfv 6962
Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnrnfv (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fnrnfv
StepHypRef Expression
1 dffn5 6961 . . 3 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
2 rneq 5942 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → ran 𝐹 = ran (𝑥𝐴 ↦ (𝐹𝑥)))
31, 2sylbi 216 . 2 (𝐹 Fn 𝐴 → ran 𝐹 = ran (𝑥𝐴 ↦ (𝐹𝑥)))
4 eqid 2726 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
54rnmpt 5961 . 2 ran (𝑥𝐴 ↦ (𝐹𝑥)) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
63, 5eqtrdi 2782 1 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  {cab 2703  wrex 3060  cmpt 5236  ran crn 5683   Fn wfn 6549  cfv 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6506  df-fun 6556  df-fn 6557  df-fv 6562
This theorem is referenced by:  fvelrnb  6963  fniinfv  6980  dffo3  7116  dffo3f  7120  fniunfv  7262  fnrnov  7599  pwcfsdom  10626  hauscmplem  23401  madef  27880  grpoinvf  30465  fpwrelmapffslem  32646  cshwrnid  32825  meascnbl  34052  omssubadd  34134  fvineqsneu  37118  fvineqsneq  37119  tfsconcatrn  43008  rnfdmpr  46894  fargshiftfo  47014
  Copyright terms: Public domain W3C validator