MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foov Structured version   Visualization version   GIF version

Theorem foov 7624
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
foov (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑧,𝐶   𝑥,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem foov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dffo3 7136 . 2 (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤)))
2 fveq2 6920 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7451 . . . . . . 7 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2798 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝑥𝐹𝑦))
54eqeq2d 2751 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (𝐹𝑤) ↔ 𝑧 = (𝑥𝐹𝑦)))
65rexxp 5867 . . . 4 (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦))
76ralbii 3099 . . 3 (∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤) ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦))
87anbi2i 622 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
91, 8bitri 275 1 (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wral 3067  wrex 3076  cop 4654   × cxp 5698  wf 6569  ontowfo 6571  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451
This theorem is referenced by:  iunfictbso  10183  xpsff1o  17627  mndpfo  18795  gafo  19336  isgrpo  30529  isgrpoi  30530  opidonOLD  37812  rngmgmbs4  37891  isgrpda  37915  ofoafo  43318  naddcnffo  43326
  Copyright terms: Public domain W3C validator