![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foov | Structured version Visualization version GIF version |
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.) |
Ref | Expression |
---|---|
foov | ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo3 7136 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤))) | |
2 | fveq2 6920 | . . . . . . 7 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝐹‘〈𝑥, 𝑦〉)) | |
3 | df-ov 7451 | . . . . . . 7 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
4 | 2, 3 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝑥𝐹𝑦)) |
5 | 4 | eqeq2d 2751 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (𝐹‘𝑤) ↔ 𝑧 = (𝑥𝐹𝑦))) |
6 | 5 | rexxp 5867 | . . . 4 ⊢ (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
7 | 6 | ralbii 3099 | . . 3 ⊢ (∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
8 | 7 | anbi2i 622 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
9 | 1, 8 | bitri 275 | 1 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3067 ∃wrex 3076 〈cop 4654 × cxp 5698 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 |
This theorem is referenced by: iunfictbso 10183 xpsff1o 17627 mndpfo 18795 gafo 19336 isgrpo 30529 isgrpoi 30530 opidonOLD 37812 rngmgmbs4 37891 isgrpda 37915 ofoafo 43318 naddcnffo 43326 |
Copyright terms: Public domain | W3C validator |