| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foov | Structured version Visualization version GIF version | ||
| Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.) |
| Ref | Expression |
|---|---|
| foov | ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo3 7074 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤))) | |
| 2 | fveq2 6858 | . . . . . . 7 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝐹‘〈𝑥, 𝑦〉)) | |
| 3 | df-ov 7390 | . . . . . . 7 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹‘𝑤) = (𝑥𝐹𝑦)) |
| 5 | 4 | eqeq2d 2740 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑧 = (𝐹‘𝑤) ↔ 𝑧 = (𝑥𝐹𝑦))) |
| 6 | 5 | rexxp 5806 | . . . 4 ⊢ (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
| 7 | 6 | ralbii 3075 | . . 3 ⊢ (∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
| 8 | 7 | anbi2i 623 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
| 9 | 1, 8 | bitri 275 | 1 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3044 ∃wrex 3053 〈cop 4595 × cxp 5636 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: iunfictbso 10067 xpsff1o 17530 mndpfo 18684 gafo 19228 isgrpo 30426 isgrpoi 30427 opidonOLD 37846 rngmgmbs4 37925 isgrpda 37949 ofoafo 43345 naddcnffo 43353 |
| Copyright terms: Public domain | W3C validator |