MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foov Structured version   Visualization version   GIF version

Theorem foov 7043
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
foov (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑧,𝐶   𝑥,𝐹,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem foov
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dffo3 6601 . 2 (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤)))
2 fveq2 6412 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 6882 . . . . . . 7 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3syl6eqr 2852 . . . . . 6 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹𝑤) = (𝑥𝐹𝑦))
54eqeq2d 2810 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (𝐹𝑤) ↔ 𝑧 = (𝑥𝐹𝑦)))
65rexxp 5469 . . . 4 (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦))
76ralbii 3162 . . 3 (∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤) ↔ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦))
87anbi2i 617 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
91, 8bitri 267 1 (𝐹:(𝐴 × 𝐵)–onto𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧𝐶𝑥𝐴𝑦𝐵 𝑧 = (𝑥𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385   = wceq 1653  wral 3090  wrex 3091  cop 4375   × cxp 5311  wf 6098  ontowfo 6100  cfv 6102  (class class class)co 6879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-fo 6108  df-fv 6110  df-ov 6882
This theorem is referenced by:  iunfictbso  9224  xpsff1o  16542  mndpfo  17628  gafo  18040  isgrpo  27876  isgrpoi  27877  opidonOLD  34137  rngmgmbs4  34216  isgrpda  34240
  Copyright terms: Public domain W3C validator