![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foov | Structured version Visualization version GIF version |
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.) |
Ref | Expression |
---|---|
foov | ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo3 7093 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤))) | |
2 | fveq2 6881 | . . . . . . 7 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑤) = (𝐹‘⟨𝑥, 𝑦⟩)) | |
3 | df-ov 7404 | . . . . . . 7 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
4 | 2, 3 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑤) = (𝑥𝐹𝑦)) |
5 | 4 | eqeq2d 2735 | . . . . 5 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (𝐹‘𝑤) ↔ 𝑧 = (𝑥𝐹𝑦))) |
6 | 5 | rexxp 5832 | . . . 4 ⊢ (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
7 | 6 | ralbii 3085 | . . 3 ⊢ (∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
8 | 7 | anbi2i 622 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
9 | 1, 8 | bitri 275 | 1 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∀wral 3053 ∃wrex 3062 ⟨cop 4626 × cxp 5664 ⟶wf 6529 –onto→wfo 6531 ‘cfv 6533 (class class class)co 7401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fo 6539 df-fv 6541 df-ov 7404 |
This theorem is referenced by: iunfictbso 10105 xpsff1o 17512 mndpfo 18680 gafo 19202 isgrpo 30219 isgrpoi 30220 opidonOLD 37210 rngmgmbs4 37289 isgrpda 37313 ofoafo 42595 naddcnffo 42603 |
Copyright terms: Public domain | W3C validator |