![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foov | Structured version Visualization version GIF version |
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.) |
Ref | Expression |
---|---|
foov | ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo3 7056 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤))) | |
2 | fveq2 6846 | . . . . . . 7 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑤) = (𝐹‘⟨𝑥, 𝑦⟩)) | |
3 | df-ov 7364 | . . . . . . 7 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
4 | 2, 3 | eqtr4di 2791 | . . . . . 6 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑤) = (𝑥𝐹𝑦)) |
5 | 4 | eqeq2d 2744 | . . . . 5 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑧 = (𝐹‘𝑤) ↔ 𝑧 = (𝑥𝐹𝑦))) |
6 | 5 | rexxp 5802 | . . . 4 ⊢ (∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
7 | 6 | ralbii 3093 | . . 3 ⊢ (∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤) ↔ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦)) |
8 | 7 | anbi2i 624 | . 2 ⊢ ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑤 ∈ (𝐴 × 𝐵)𝑧 = (𝐹‘𝑤)) ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
9 | 1, 8 | bitri 275 | 1 ⊢ (𝐹:(𝐴 × 𝐵)–onto→𝐶 ↔ (𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ∀𝑧 ∈ 𝐶 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = (𝑥𝐹𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∀wral 3061 ∃wrex 3070 ⟨cop 4596 × cxp 5635 ⟶wf 6496 –onto→wfo 6498 ‘cfv 6500 (class class class)co 7361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-fo 6506 df-fv 6508 df-ov 7364 |
This theorem is referenced by: iunfictbso 10058 xpsff1o 17457 mndpfo 18587 gafo 19084 isgrpo 29488 isgrpoi 29489 opidonOLD 36361 rngmgmbs4 36440 isgrpda 36464 ofoafo 41719 naddcnffo 41727 |
Copyright terms: Public domain | W3C validator |