Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fovcdmd | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
fovcdmd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
fovcdmd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
fovcdmd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fovcdmd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovcdmd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
2 | fovcdmd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
3 | fovcdmd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | fovcdm 7474 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 × cxp 5598 ⟶wf 6454 (class class class)co 7307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 |
This theorem is referenced by: eroveu 8632 fseqenlem1 9826 rlimcn2 15345 homarel 17796 curf1cl 17991 curf2cl 17994 hofcllem 18021 yonedalem3b 18042 gasubg 18953 gacan 18956 gapm 18957 gastacos 18961 orbsta 18964 galactghm 19057 sylow1lem2 19249 sylow2alem2 19268 sylow3lem1 19277 efgcpbllemb 19406 frgpuplem 19423 frlmbas3 21028 mamucl 21593 mamuass 21594 mamudi 21595 mamudir 21596 mamuvs1 21597 mamuvs2 21598 mamulid 21635 mamurid 21636 mamutpos 21652 matgsumcl 21654 mavmulcl 21741 mavmulass 21743 mdetleib2 21782 mdetf 21789 mdetdiaglem 21792 mdetrlin 21796 mdetrsca 21797 mdetralt 21802 mdetunilem7 21812 maducoeval2 21834 madugsum 21837 madurid 21838 tsmsxplem2 23350 isxmet2d 23525 ismet2 23531 prdsxmetlem 23566 comet 23714 ipcn 24455 ovoliunlem2 24712 itg1addlem4 24908 itg1addlem4OLD 24909 itg1addlem5 24910 mbfi1fseqlem5 24929 limccnp2 25101 midcl 27183 fedgmullem2 31756 pstmxmet 31892 cvmlift2lem9 33318 isbnd3 35986 prdsbnd 35995 iscringd 36200 rmxycomplete 40777 rmxyadd 40781 2arympt 46053 |
Copyright terms: Public domain | W3C validator |