| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcdmd | Structured version Visualization version GIF version | ||
| Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| fovcdmd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| fovcdmd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
| fovcdmd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fovcdmd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcdmd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
| 2 | fovcdmd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
| 3 | fovcdmd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | fovcdm 7559 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 × cxp 5636 ⟶wf 6507 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: eroveu 8785 fseqenlem1 9977 rlimcn2 15557 homarel 17998 curf1cl 18189 curf2cl 18192 hofcllem 18219 yonedalem3b 18240 gasubg 19234 gacan 19237 gapm 19238 gastacos 19242 orbsta 19245 galactghm 19334 sylow1lem2 19529 sylow2alem2 19548 sylow3lem1 19557 efgcpbllemb 19685 frgpuplem 19702 frlmbas3 21685 mamucl 22288 mamuass 22289 mamudi 22290 mamudir 22291 mamuvs1 22292 mamuvs2 22293 mamulid 22328 mamurid 22329 mamutpos 22345 matgsumcl 22347 mavmulcl 22434 mavmulass 22436 mdetleib2 22475 mdetf 22482 mdetdiaglem 22485 mdetrlin 22489 mdetrsca 22490 mdetralt 22495 mdetunilem7 22505 maducoeval2 22527 madugsum 22530 madurid 22531 tsmsxplem2 24041 isxmet2d 24215 ismet2 24221 prdsxmetlem 24256 comet 24401 ipcn 25146 ovoliunlem2 25404 itg1addlem4 25600 itg1addlem5 25601 mbfi1fseqlem5 25620 limccnp2 25793 midcl 28704 conjga 33127 fedgmullem2 33626 pstmxmet 33887 cvmlift2lem9 35298 isbnd3 37778 prdsbnd 37787 iscringd 37992 rmxycomplete 42906 rmxyadd 42910 2arympt 48638 |
| Copyright terms: Public domain | W3C validator |