| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcdmd | Structured version Visualization version GIF version | ||
| Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| fovcdmd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| fovcdmd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
| fovcdmd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fovcdmd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcdmd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
| 2 | fovcdmd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
| 3 | fovcdmd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | fovcdm 7575 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 × cxp 5652 ⟶wf 6526 (class class class)co 7403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: eroveu 8824 fseqenlem1 10036 rlimcn2 15605 homarel 18047 curf1cl 18238 curf2cl 18241 hofcllem 18268 yonedalem3b 18289 gasubg 19283 gacan 19286 gapm 19287 gastacos 19291 orbsta 19294 galactghm 19383 sylow1lem2 19578 sylow2alem2 19597 sylow3lem1 19606 efgcpbllemb 19734 frgpuplem 19751 frlmbas3 21734 mamucl 22337 mamuass 22338 mamudi 22339 mamudir 22340 mamuvs1 22341 mamuvs2 22342 mamulid 22377 mamurid 22378 mamutpos 22394 matgsumcl 22396 mavmulcl 22483 mavmulass 22485 mdetleib2 22524 mdetf 22531 mdetdiaglem 22534 mdetrlin 22538 mdetrsca 22539 mdetralt 22544 mdetunilem7 22554 maducoeval2 22576 madugsum 22579 madurid 22580 tsmsxplem2 24090 isxmet2d 24264 ismet2 24270 prdsxmetlem 24305 comet 24450 ipcn 25196 ovoliunlem2 25454 itg1addlem4 25650 itg1addlem5 25651 mbfi1fseqlem5 25670 limccnp2 25843 midcl 28702 fedgmullem2 33616 pstmxmet 33874 cvmlift2lem9 35279 isbnd3 37754 prdsbnd 37763 iscringd 37968 rmxycomplete 42888 rmxyadd 42892 2arympt 48577 |
| Copyright terms: Public domain | W3C validator |