| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcdmd | Structured version Visualization version GIF version | ||
| Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| fovcdmd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| fovcdmd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
| fovcdmd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fovcdmd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcdmd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
| 2 | fovcdmd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
| 3 | fovcdmd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | fovcdm 7522 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 × cxp 5617 ⟶wf 6482 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: eroveu 8742 fseqenlem1 9922 rlimcn2 15500 homarel 17945 curf1cl 18136 curf2cl 18139 hofcllem 18166 yonedalem3b 18187 gasubg 19216 gacan 19219 gapm 19220 gastacos 19224 orbsta 19227 galactghm 19318 sylow1lem2 19513 sylow2alem2 19532 sylow3lem1 19541 efgcpbllemb 19669 frgpuplem 19686 frlmbas3 21715 mamucl 22317 mamuass 22318 mamudi 22319 mamudir 22320 mamuvs1 22321 mamuvs2 22322 mamulid 22357 mamurid 22358 mamutpos 22374 matgsumcl 22376 mavmulcl 22463 mavmulass 22465 mdetleib2 22504 mdetf 22511 mdetdiaglem 22514 mdetrlin 22518 mdetrsca 22519 mdetralt 22524 mdetunilem7 22534 maducoeval2 22556 madugsum 22559 madurid 22560 tsmsxplem2 24070 isxmet2d 24243 ismet2 24249 prdsxmetlem 24284 comet 24429 ipcn 25174 ovoliunlem2 25432 itg1addlem4 25628 itg1addlem5 25629 mbfi1fseqlem5 25648 limccnp2 25821 midcl 28756 conjga 33146 fedgmullem2 33664 pstmxmet 33931 cvmlift2lem9 35376 isbnd3 37844 prdsbnd 37853 iscringd 38058 rmxycomplete 43034 rmxyadd 43038 2arympt 48774 |
| Copyright terms: Public domain | W3C validator |