| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcdmd | Structured version Visualization version GIF version | ||
| Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| fovcdmd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| fovcdmd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
| fovcdmd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fovcdmd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcdmd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
| 2 | fovcdmd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
| 3 | fovcdmd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | fovcdm 7516 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 × cxp 5614 ⟶wf 6477 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: eroveu 8736 fseqenlem1 9912 rlimcn2 15495 homarel 17940 curf1cl 18131 curf2cl 18134 hofcllem 18161 yonedalem3b 18182 gasubg 19212 gacan 19215 gapm 19216 gastacos 19220 orbsta 19223 galactghm 19314 sylow1lem2 19509 sylow2alem2 19528 sylow3lem1 19537 efgcpbllemb 19665 frgpuplem 19682 frlmbas3 21711 mamucl 22314 mamuass 22315 mamudi 22316 mamudir 22317 mamuvs1 22318 mamuvs2 22319 mamulid 22354 mamurid 22355 mamutpos 22371 matgsumcl 22373 mavmulcl 22460 mavmulass 22462 mdetleib2 22501 mdetf 22508 mdetdiaglem 22511 mdetrlin 22515 mdetrsca 22516 mdetralt 22521 mdetunilem7 22531 maducoeval2 22553 madugsum 22556 madurid 22557 tsmsxplem2 24067 isxmet2d 24240 ismet2 24246 prdsxmetlem 24281 comet 24426 ipcn 25171 ovoliunlem2 25429 itg1addlem4 25625 itg1addlem5 25626 mbfi1fseqlem5 25645 limccnp2 25818 midcl 28753 conjga 33134 fedgmullem2 33638 pstmxmet 33905 cvmlift2lem9 35343 isbnd3 37823 prdsbnd 37832 iscringd 38037 rmxycomplete 42949 rmxyadd 42953 2arympt 48680 |
| Copyright terms: Public domain | W3C validator |