| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcdmd | Structured version Visualization version GIF version | ||
| Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| fovcdmd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| fovcdmd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
| fovcdmd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| fovcdmd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcdmd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
| 2 | fovcdmd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
| 3 | fovcdmd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | fovcdm 7523 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 × cxp 5621 ⟶wf 6482 (class class class)co 7353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: eroveu 8746 fseqenlem1 9937 rlimcn2 15516 homarel 17961 curf1cl 18152 curf2cl 18155 hofcllem 18182 yonedalem3b 18203 gasubg 19199 gacan 19202 gapm 19203 gastacos 19207 orbsta 19210 galactghm 19301 sylow1lem2 19496 sylow2alem2 19515 sylow3lem1 19524 efgcpbllemb 19652 frgpuplem 19669 frlmbas3 21701 mamucl 22304 mamuass 22305 mamudi 22306 mamudir 22307 mamuvs1 22308 mamuvs2 22309 mamulid 22344 mamurid 22345 mamutpos 22361 matgsumcl 22363 mavmulcl 22450 mavmulass 22452 mdetleib2 22491 mdetf 22498 mdetdiaglem 22501 mdetrlin 22505 mdetrsca 22506 mdetralt 22511 mdetunilem7 22521 maducoeval2 22543 madugsum 22546 madurid 22547 tsmsxplem2 24057 isxmet2d 24231 ismet2 24237 prdsxmetlem 24272 comet 24417 ipcn 25162 ovoliunlem2 25420 itg1addlem4 25616 itg1addlem5 25617 mbfi1fseqlem5 25636 limccnp2 25809 midcl 28740 conjga 33125 fedgmullem2 33602 pstmxmet 33863 cvmlift2lem9 35283 isbnd3 37763 prdsbnd 37772 iscringd 37977 rmxycomplete 42890 rmxyadd 42894 2arympt 48635 |
| Copyright terms: Public domain | W3C validator |