![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fovcdmd | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
fovcdmd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
fovcdmd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
fovcdmd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fovcdmd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovcdmd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
2 | fovcdmd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
3 | fovcdmd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | fovcdm 7602 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 × cxp 5686 ⟶wf 6558 (class class class)co 7430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 |
This theorem is referenced by: eroveu 8850 fseqenlem1 10061 rlimcn2 15623 homarel 18089 curf1cl 18284 curf2cl 18287 hofcllem 18314 yonedalem3b 18335 gasubg 19332 gacan 19335 gapm 19336 gastacos 19340 orbsta 19343 galactghm 19436 sylow1lem2 19631 sylow2alem2 19650 sylow3lem1 19659 efgcpbllemb 19787 frgpuplem 19804 frlmbas3 21813 mamucl 22420 mamuass 22421 mamudi 22422 mamudir 22423 mamuvs1 22424 mamuvs2 22425 mamulid 22462 mamurid 22463 mamutpos 22479 matgsumcl 22481 mavmulcl 22568 mavmulass 22570 mdetleib2 22609 mdetf 22616 mdetdiaglem 22619 mdetrlin 22623 mdetrsca 22624 mdetralt 22629 mdetunilem7 22639 maducoeval2 22661 madugsum 22664 madurid 22665 tsmsxplem2 24177 isxmet2d 24352 ismet2 24358 prdsxmetlem 24393 comet 24541 ipcn 25293 ovoliunlem2 25551 itg1addlem4 25747 itg1addlem4OLD 25748 itg1addlem5 25749 mbfi1fseqlem5 25768 limccnp2 25941 midcl 28799 fedgmullem2 33657 pstmxmet 33857 cvmlift2lem9 35295 isbnd3 37770 prdsbnd 37779 iscringd 37984 rmxycomplete 42905 rmxyadd 42909 2arympt 48498 |
Copyright terms: Public domain | W3C validator |