| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sdomne0 | Structured version Visualization version GIF version | ||
| Description: A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025.) |
| Ref | Expression |
|---|---|
| sdomne0 | ⊢ (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8971 | . . . . 5 ⊢ Rel ≺ | |
| 2 | 1 | brrelex1i 5715 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → 𝐵 ∈ V) |
| 3 | breq1 5127 | . . . . . . 7 ⊢ (𝐵 = ∅ → (𝐵 ≺ 𝐴 ↔ ∅ ≺ 𝐴)) | |
| 4 | 3 | biimpd 229 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 = ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴))) |
| 6 | 0sdomg 9123 | . . . . . 6 ⊢ (𝐵 ∈ V → (∅ ≺ 𝐵 ↔ 𝐵 ≠ ∅)) | |
| 7 | sdomtr 9134 | . . . . . . 7 ⊢ ((∅ ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → ∅ ≺ 𝐴) | |
| 8 | 7 | ex 412 | . . . . . 6 ⊢ (∅ ≺ 𝐵 → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
| 9 | 6, 8 | biimtrrdi 254 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ≠ ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴))) |
| 10 | 5, 9 | pm2.61dne 3019 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
| 11 | 2, 10 | syl 17 | . . 3 ⊢ (𝐵 ≺ 𝐴 → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
| 12 | 1 | brrelex2i 5716 | . . . . 5 ⊢ (∅ ≺ 𝐴 → 𝐴 ∈ V) |
| 13 | 0sdomg 9123 | . . . . 5 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (∅ ≺ 𝐴 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 15 | 14 | ibi 267 | . . 3 ⊢ (∅ ≺ 𝐴 → 𝐴 ≠ ∅) |
| 16 | 11, 15 | syl6 35 | . 2 ⊢ (𝐵 ≺ 𝐴 → (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅)) |
| 17 | 16 | pm2.43i 52 | 1 ⊢ (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∅c0 4313 class class class wbr 5124 ≺ csdm 8963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |