![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sdomne0 | Structured version Visualization version GIF version |
Description: A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025.) |
Ref | Expression |
---|---|
sdomne0 | ⊢ (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8945 | . . . . 5 ⊢ Rel ≺ | |
2 | 1 | brrelex1i 5725 | . . . 4 ⊢ (𝐵 ≺ 𝐴 → 𝐵 ∈ V) |
3 | breq1 5144 | . . . . . . 7 ⊢ (𝐵 = ∅ → (𝐵 ≺ 𝐴 ↔ ∅ ≺ 𝐴)) | |
4 | 3 | biimpd 228 | . . . . . 6 ⊢ (𝐵 = ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 = ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴))) |
6 | 0sdomg 9103 | . . . . . 6 ⊢ (𝐵 ∈ V → (∅ ≺ 𝐵 ↔ 𝐵 ≠ ∅)) | |
7 | sdomtr 9114 | . . . . . . 7 ⊢ ((∅ ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → ∅ ≺ 𝐴) | |
8 | 7 | ex 412 | . . . . . 6 ⊢ (∅ ≺ 𝐵 → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
9 | 6, 8 | syl6bir 254 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ≠ ∅ → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴))) |
10 | 5, 9 | pm2.61dne 3022 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
11 | 2, 10 | syl 17 | . . 3 ⊢ (𝐵 ≺ 𝐴 → (𝐵 ≺ 𝐴 → ∅ ≺ 𝐴)) |
12 | 1 | brrelex2i 5726 | . . . . 5 ⊢ (∅ ≺ 𝐴 → 𝐴 ∈ V) |
13 | 0sdomg 9103 | . . . . 5 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (∅ ≺ 𝐴 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
15 | 14 | ibi 267 | . . 3 ⊢ (∅ ≺ 𝐴 → 𝐴 ≠ ∅) |
16 | 11, 15 | syl6 35 | . 2 ⊢ (𝐵 ≺ 𝐴 → (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅)) |
17 | 16 | pm2.43i 52 | 1 ⊢ (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ∅c0 4317 class class class wbr 5141 ≺ csdm 8937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |