Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdomne0 Structured version   Visualization version   GIF version

Theorem sdomne0 43454
Description: A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025.)
Assertion
Ref Expression
sdomne0 (𝐵𝐴𝐴 ≠ ∅)

Proof of Theorem sdomne0
StepHypRef Expression
1 relsdom 8876 . . . . 5 Rel ≺
21brrelex1i 5670 . . . 4 (𝐵𝐴𝐵 ∈ V)
3 breq1 5092 . . . . . . 7 (𝐵 = ∅ → (𝐵𝐴 ↔ ∅ ≺ 𝐴))
43biimpd 229 . . . . . 6 (𝐵 = ∅ → (𝐵𝐴 → ∅ ≺ 𝐴))
54a1i 11 . . . . 5 (𝐵 ∈ V → (𝐵 = ∅ → (𝐵𝐴 → ∅ ≺ 𝐴)))
6 0sdomg 9019 . . . . . 6 (𝐵 ∈ V → (∅ ≺ 𝐵𝐵 ≠ ∅))
7 sdomtr 9028 . . . . . . 7 ((∅ ≺ 𝐵𝐵𝐴) → ∅ ≺ 𝐴)
87ex 412 . . . . . 6 (∅ ≺ 𝐵 → (𝐵𝐴 → ∅ ≺ 𝐴))
96, 8biimtrrdi 254 . . . . 5 (𝐵 ∈ V → (𝐵 ≠ ∅ → (𝐵𝐴 → ∅ ≺ 𝐴)))
105, 9pm2.61dne 3014 . . . 4 (𝐵 ∈ V → (𝐵𝐴 → ∅ ≺ 𝐴))
112, 10syl 17 . . 3 (𝐵𝐴 → (𝐵𝐴 → ∅ ≺ 𝐴))
121brrelex2i 5671 . . . . 5 (∅ ≺ 𝐴𝐴 ∈ V)
13 0sdomg 9019 . . . . 5 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1412, 13syl 17 . . . 4 (∅ ≺ 𝐴 → (∅ ≺ 𝐴𝐴 ≠ ∅))
1514ibi 267 . . 3 (∅ ≺ 𝐴𝐴 ≠ ∅)
1611, 15syl6 35 . 2 (𝐵𝐴 → (𝐵𝐴𝐴 ≠ ∅))
1716pm2.43i 52 1 (𝐵𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4280   class class class wbr 5089  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator