| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.61dne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 5 | 2, 4 | pm2.61ine 3015 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: pm2.61dane 3019 wefrc 5648 wereu2 5651 frpomin 6329 oe0lem 8525 fisupg 9296 marypha1lem 9445 fiinfg 9513 wdomtr 9589 unxpwdom2 9602 frmin 9763 fpwwe2lem12 10656 grur1a 10833 grutsk 10836 fimaxre2 12187 xlesubadd 13279 cshwidxmod 14821 sqreu 15379 pcxnn0cl 16880 pcxcl 16881 pcmpt 16912 symggen 19451 isabvd 20772 lspprat 21114 mdetralt 22546 ordtrest2lem 23141 ordthauslem 23321 comppfsc 23470 fbssint 23776 fclscf 23963 tgptsmscld 24089 ovoliunnul 25460 itg11 25644 i1fadd 25648 fta1g 26127 plydiveu 26258 fta1 26268 mulcxp 26646 cxpsqrt 26664 ostth3 27601 madebdaylemlrcut 27862 brbtwn2 28884 colinearalg 28889 clwwisshclwws 29996 ordtrest2NEWlem 33953 subfacp1lem5 35206 btwnexch2 36041 fnemeet2 36385 fnejoin2 36387 limsucncmpi 36463 areacirc 37737 sstotbnd2 37798 ssbnd 37812 prdsbnd2 37819 rrncmslem 37856 atnlt 39331 atlelt 39457 llnnlt 39542 lplnnlt 39584 lvolnltN 39637 pmapglb2N 39790 pmapglb2xN 39791 paddasslem14 39852 cdleme27a 40386 sdomne0 43437 sdomne0d 43438 modelaxreplem1 45003 iccpartigtl 47437 |
| Copyright terms: Public domain | W3C validator |