| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.61dne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 5 | 2, 4 | pm2.61ine 3008 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: pm2.61dane 3012 wefrc 5632 wereu2 5635 frpomin 6313 oe0lem 8477 fisupg 9235 marypha1lem 9384 fiinfg 9452 wdomtr 9528 unxpwdom2 9541 frmin 9702 fpwwe2lem12 10595 grur1a 10772 grutsk 10775 fimaxre2 12128 xlesubadd 13223 cshwidxmod 14768 sqreu 15327 pcxnn0cl 16831 pcxcl 16832 pcmpt 16863 symggen 19400 isabvd 20721 lspprat 21063 mdetralt 22495 ordtrest2lem 23090 ordthauslem 23270 comppfsc 23419 fbssint 23725 fclscf 23912 tgptsmscld 24038 ovoliunnul 25408 itg11 25592 i1fadd 25596 fta1g 26075 plydiveu 26206 fta1 26216 mulcxp 26594 cxpsqrt 26612 ostth3 27549 madebdaylemlrcut 27810 brbtwn2 28832 colinearalg 28837 clwwisshclwws 29944 ordtrest2NEWlem 33912 subfacp1lem5 35171 btwnexch2 36011 fnemeet2 36355 fnejoin2 36357 limsucncmpi 36433 areacirc 37707 sstotbnd2 37768 ssbnd 37782 prdsbnd2 37789 rrncmslem 37826 atnlt 39306 atlelt 39432 llnnlt 39517 lplnnlt 39559 lvolnltN 39612 pmapglb2N 39765 pmapglb2xN 39766 paddasslem14 39827 cdleme27a 40361 sdomne0 43402 sdomne0d 43403 modelaxreplem1 44968 iccpartigtl 47424 |
| Copyright terms: Public domain | W3C validator |