Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
pm2.61dne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
5 | 2, 4 | pm2.61ine 3027 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: pm2.61dane 3031 wefrc 5574 wereu2 5577 frpomin 6228 oe0lem 8305 fisupg 8992 marypha1lem 9122 fiinfg 9188 wdomtr 9264 unxpwdom2 9277 frmin 9438 fpwwe2lem12 10329 grur1a 10506 grutsk 10509 fimaxre2 11850 xlesubadd 12926 cshwidxmod 14444 sqreu 15000 pcxnn0cl 16489 pcxcl 16490 pcmpt 16521 symggen 18993 isabvd 19995 lspprat 20330 mdetralt 21665 ordtrest2lem 22262 ordthauslem 22442 comppfsc 22591 fbssint 22897 fclscf 23084 tgptsmscld 23210 ovoliunnul 24576 itg11 24760 i1fadd 24764 fta1g 25237 plydiveu 25363 fta1 25373 mulcxp 25745 cxpsqrt 25763 ostth3 26691 brbtwn2 27176 colinearalg 27181 clwwisshclwws 28280 ordtrest2NEWlem 31774 subfacp1lem5 33046 madebdaylemlrcut 34006 btwnexch2 34252 fnemeet2 34483 fnejoin2 34485 limsucncmpi 34561 areacirc 35797 sstotbnd2 35859 ssbnd 35873 prdsbnd2 35880 rrncmslem 35917 atnlt 37254 atlelt 37379 llnnlt 37464 lplnnlt 37506 lvolnltN 37559 pmapglb2N 37712 pmapglb2xN 37713 paddasslem14 37774 cdleme27a 38308 iccpartigtl 44763 |
Copyright terms: Public domain | W3C validator |