| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.61dne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 5 | 2, 4 | pm2.61ine 3008 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: pm2.61dane 3012 wefrc 5625 wereu2 5628 frpomin 6301 oe0lem 8454 fisupg 9211 marypha1lem 9360 fiinfg 9428 wdomtr 9504 unxpwdom2 9517 frmin 9678 fpwwe2lem12 10571 grur1a 10748 grutsk 10751 fimaxre2 12104 xlesubadd 13199 cshwidxmod 14744 sqreu 15303 pcxnn0cl 16807 pcxcl 16808 pcmpt 16839 symggen 19376 isabvd 20697 lspprat 21039 mdetralt 22471 ordtrest2lem 23066 ordthauslem 23246 comppfsc 23395 fbssint 23701 fclscf 23888 tgptsmscld 24014 ovoliunnul 25384 itg11 25568 i1fadd 25572 fta1g 26051 plydiveu 26182 fta1 26192 mulcxp 26570 cxpsqrt 26588 ostth3 27525 madebdaylemlrcut 27786 brbtwn2 28808 colinearalg 28813 clwwisshclwws 29917 ordtrest2NEWlem 33885 subfacp1lem5 35144 btwnexch2 35984 fnemeet2 36328 fnejoin2 36330 limsucncmpi 36406 areacirc 37680 sstotbnd2 37741 ssbnd 37755 prdsbnd2 37762 rrncmslem 37799 atnlt 39279 atlelt 39405 llnnlt 39490 lplnnlt 39532 lvolnltN 39585 pmapglb2N 39738 pmapglb2xN 39739 paddasslem14 39800 cdleme27a 40334 sdomne0 43375 sdomne0d 43376 modelaxreplem1 44941 iccpartigtl 47397 |
| Copyright terms: Public domain | W3C validator |