![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
pm2.61dne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
5 | 2, 4 | pm2.61ine 3026 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2942 |
This theorem is referenced by: pm2.61dane 3030 wefrc 5671 wereu2 5674 frpomin 6342 oe0lem 8513 fisupg 9291 marypha1lem 9428 fiinfg 9494 wdomtr 9570 unxpwdom2 9583 frmin 9744 fpwwe2lem12 10637 grur1a 10814 grutsk 10817 fimaxre2 12159 xlesubadd 13242 cshwidxmod 14753 sqreu 15307 pcxnn0cl 16793 pcxcl 16794 pcmpt 16825 symggen 19338 isabvd 20428 lspprat 20766 mdetralt 22110 ordtrest2lem 22707 ordthauslem 22887 comppfsc 23036 fbssint 23342 fclscf 23529 tgptsmscld 23655 ovoliunnul 25024 itg11 25208 i1fadd 25212 fta1g 25685 plydiveu 25811 fta1 25821 mulcxp 26193 cxpsqrt 26211 ostth3 27141 madebdaylemlrcut 27393 brbtwn2 28163 colinearalg 28168 clwwisshclwws 29268 ordtrest2NEWlem 32902 subfacp1lem5 34175 btwnexch2 34995 fnemeet2 35252 fnejoin2 35254 limsucncmpi 35330 areacirc 36581 sstotbnd2 36642 ssbnd 36656 prdsbnd2 36663 rrncmslem 36700 atnlt 38183 atlelt 38309 llnnlt 38394 lplnnlt 38436 lvolnltN 38489 pmapglb2N 38642 pmapglb2xN 38643 paddasslem14 38704 cdleme27a 39238 sdomne0 42164 sdomne0d 42165 iccpartigtl 46091 |
Copyright terms: Public domain | W3C validator |