| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.61dne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 5 | 2, 4 | pm2.61ine 3009 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: pm2.61dane 3013 wefrc 5635 wereu2 5638 frpomin 6316 oe0lem 8480 fisupg 9242 marypha1lem 9391 fiinfg 9459 wdomtr 9535 unxpwdom2 9548 frmin 9709 fpwwe2lem12 10602 grur1a 10779 grutsk 10782 fimaxre2 12135 xlesubadd 13230 cshwidxmod 14775 sqreu 15334 pcxnn0cl 16838 pcxcl 16839 pcmpt 16870 symggen 19407 isabvd 20728 lspprat 21070 mdetralt 22502 ordtrest2lem 23097 ordthauslem 23277 comppfsc 23426 fbssint 23732 fclscf 23919 tgptsmscld 24045 ovoliunnul 25415 itg11 25599 i1fadd 25603 fta1g 26082 plydiveu 26213 fta1 26223 mulcxp 26601 cxpsqrt 26619 ostth3 27556 madebdaylemlrcut 27817 brbtwn2 28839 colinearalg 28844 clwwisshclwws 29951 ordtrest2NEWlem 33919 subfacp1lem5 35178 btwnexch2 36018 fnemeet2 36362 fnejoin2 36364 limsucncmpi 36440 areacirc 37714 sstotbnd2 37775 ssbnd 37789 prdsbnd2 37796 rrncmslem 37833 atnlt 39313 atlelt 39439 llnnlt 39524 lplnnlt 39566 lvolnltN 39619 pmapglb2N 39772 pmapglb2xN 39773 paddasslem14 39834 cdleme27a 40368 sdomne0 43409 sdomne0d 43410 modelaxreplem1 44975 iccpartigtl 47428 |
| Copyright terms: Public domain | W3C validator |