Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
pm2.61dne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
5 | 2, 4 | pm2.61ine 3025 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: pm2.61dane 3029 wefrc 5614 wereu2 5617 frpomin 6279 oe0lem 8414 fisupg 9156 marypha1lem 9290 fiinfg 9356 wdomtr 9432 unxpwdom2 9445 frmin 9606 fpwwe2lem12 10499 grur1a 10676 grutsk 10679 fimaxre2 12021 xlesubadd 13098 cshwidxmod 14614 sqreu 15171 pcxnn0cl 16658 pcxcl 16659 pcmpt 16690 symggen 19174 isabvd 20186 lspprat 20521 mdetralt 21863 ordtrest2lem 22460 ordthauslem 22640 comppfsc 22789 fbssint 23095 fclscf 23282 tgptsmscld 23408 ovoliunnul 24777 itg11 24961 i1fadd 24965 fta1g 25438 plydiveu 25564 fta1 25574 mulcxp 25946 cxpsqrt 25964 ostth3 26892 brbtwn2 27562 colinearalg 27567 clwwisshclwws 28667 ordtrest2NEWlem 32170 subfacp1lem5 33445 madebdaylemlrcut 34175 btwnexch2 34421 fnemeet2 34652 fnejoin2 34654 limsucncmpi 34730 areacirc 35975 sstotbnd2 36037 ssbnd 36051 prdsbnd2 36058 rrncmslem 36095 atnlt 37580 atlelt 37706 llnnlt 37791 lplnnlt 37833 lvolnltN 37886 pmapglb2N 38039 pmapglb2xN 38040 paddasslem14 38101 cdleme27a 38635 sdomne0 41342 sdomne0d 41343 iccpartigtl 45226 |
Copyright terms: Public domain | W3C validator |