| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.61dne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 5 | 2, 4 | pm2.61ine 3011 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2929 |
| This theorem is referenced by: pm2.61dane 3015 wefrc 5608 wereu2 5611 frpomin 6287 oe0lem 8428 fisupg 9172 marypha1lem 9317 fiinfg 9385 wdomtr 9461 unxpwdom2 9474 frmin 9642 fpwwe2lem12 10533 grur1a 10710 grutsk 10713 fimaxre2 12067 xlesubadd 13162 cshwidxmod 14710 sqreu 15268 pcxnn0cl 16772 pcxcl 16773 pcmpt 16804 symggen 19382 isabvd 20727 lspprat 21090 mdetralt 22523 ordtrest2lem 23118 ordthauslem 23298 comppfsc 23447 fbssint 23753 fclscf 23940 tgptsmscld 24066 ovoliunnul 25435 itg11 25619 i1fadd 25623 fta1g 26102 plydiveu 26233 fta1 26243 mulcxp 26621 cxpsqrt 26639 ostth3 27576 madebdaylemlrcut 27844 brbtwn2 28883 colinearalg 28888 clwwisshclwws 29995 ordtrest2NEWlem 33935 fissorduni 35101 subfacp1lem5 35228 btwnexch2 36065 fnemeet2 36409 fnejoin2 36411 limsucncmpi 36487 areacirc 37761 sstotbnd2 37822 ssbnd 37836 prdsbnd2 37843 rrncmslem 37880 atnlt 39360 atlelt 39485 llnnlt 39570 lplnnlt 39612 lvolnltN 39665 pmapglb2N 39818 pmapglb2xN 39819 paddasslem14 39880 cdleme27a 40414 sdomne0 43454 sdomne0d 43455 modelaxreplem1 45019 iccpartigtl 47462 |
| Copyright terms: Public domain | W3C validator |