Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
pm2.61dne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
5 | 2, 4 | pm2.61ine 3029 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2945 |
This theorem is referenced by: pm2.61dane 3033 wefrc 5584 wereu2 5587 frpomin 6247 oe0lem 8352 fisupg 9071 marypha1lem 9201 fiinfg 9267 wdomtr 9343 unxpwdom2 9356 frmin 9516 fpwwe2lem12 10407 grur1a 10584 grutsk 10587 fimaxre2 11929 xlesubadd 13006 cshwidxmod 14525 sqreu 15081 pcxnn0cl 16570 pcxcl 16571 pcmpt 16602 symggen 19087 isabvd 20089 lspprat 20424 mdetralt 21766 ordtrest2lem 22363 ordthauslem 22543 comppfsc 22692 fbssint 22998 fclscf 23185 tgptsmscld 23311 ovoliunnul 24680 itg11 24864 i1fadd 24868 fta1g 25341 plydiveu 25467 fta1 25477 mulcxp 25849 cxpsqrt 25867 ostth3 26795 brbtwn2 27282 colinearalg 27287 clwwisshclwws 28388 ordtrest2NEWlem 31881 subfacp1lem5 33155 madebdaylemlrcut 34088 btwnexch2 34334 fnemeet2 34565 fnejoin2 34567 limsucncmpi 34643 areacirc 35879 sstotbnd2 35941 ssbnd 35955 prdsbnd2 35962 rrncmslem 35999 atnlt 37334 atlelt 37459 llnnlt 37544 lplnnlt 37586 lvolnltN 37639 pmapglb2N 37792 pmapglb2xN 37793 paddasslem14 37854 cdleme27a 38388 iccpartigtl 44886 |
Copyright terms: Public domain | W3C validator |