![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
pm2.61dne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
5 | 2, 4 | pm2.61ine 3025 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2941 |
This theorem is referenced by: pm2.61dane 3029 wefrc 5670 wereu2 5673 frpomin 6341 oe0lem 8515 fisupg 9293 marypha1lem 9430 fiinfg 9496 wdomtr 9572 unxpwdom2 9585 frmin 9746 fpwwe2lem12 10639 grur1a 10816 grutsk 10819 fimaxre2 12161 xlesubadd 13244 cshwidxmod 14755 sqreu 15309 pcxnn0cl 16795 pcxcl 16796 pcmpt 16827 symggen 19340 isabvd 20432 lspprat 20772 mdetralt 22117 ordtrest2lem 22714 ordthauslem 22894 comppfsc 23043 fbssint 23349 fclscf 23536 tgptsmscld 23662 ovoliunnul 25031 itg11 25215 i1fadd 25219 fta1g 25692 plydiveu 25818 fta1 25828 mulcxp 26200 cxpsqrt 26218 ostth3 27148 madebdaylemlrcut 27401 brbtwn2 28201 colinearalg 28206 clwwisshclwws 29306 ordtrest2NEWlem 32971 subfacp1lem5 34244 btwnexch2 35064 fnemeet2 35338 fnejoin2 35340 limsucncmpi 35416 areacirc 36667 sstotbnd2 36728 ssbnd 36742 prdsbnd2 36749 rrncmslem 36786 atnlt 38269 atlelt 38395 llnnlt 38480 lplnnlt 38522 lvolnltN 38575 pmapglb2N 38728 pmapglb2xN 38729 paddasslem14 38790 cdleme27a 39324 sdomne0 42246 sdomne0d 42247 iccpartigtl 46170 |
Copyright terms: Public domain | W3C validator |