| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
| pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.61dne | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
| 2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
| 3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
| 4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
| 5 | 2, 4 | pm2.61ine 3008 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: pm2.61dane 3012 wefrc 5613 wereu2 5616 frpomin 6288 oe0lem 8431 fisupg 9177 marypha1lem 9323 fiinfg 9391 wdomtr 9467 unxpwdom2 9480 frmin 9645 fpwwe2lem12 10536 grur1a 10713 grutsk 10716 fimaxre2 12070 xlesubadd 13165 cshwidxmod 14709 sqreu 15268 pcxnn0cl 16772 pcxcl 16773 pcmpt 16804 symggen 19349 isabvd 20697 lspprat 21060 mdetralt 22493 ordtrest2lem 23088 ordthauslem 23268 comppfsc 23417 fbssint 23723 fclscf 23910 tgptsmscld 24036 ovoliunnul 25406 itg11 25590 i1fadd 25594 fta1g 26073 plydiveu 26204 fta1 26214 mulcxp 26592 cxpsqrt 26610 ostth3 27547 madebdaylemlrcut 27813 brbtwn2 28850 colinearalg 28855 clwwisshclwws 29959 ordtrest2NEWlem 33889 subfacp1lem5 35157 btwnexch2 35997 fnemeet2 36341 fnejoin2 36343 limsucncmpi 36419 areacirc 37693 sstotbnd2 37754 ssbnd 37768 prdsbnd2 37775 rrncmslem 37812 atnlt 39292 atlelt 39417 llnnlt 39502 lplnnlt 39544 lvolnltN 39597 pmapglb2N 39750 pmapglb2xN 39751 paddasslem14 39812 cdleme27a 40346 sdomne0 43386 sdomne0d 43387 modelaxreplem1 44952 iccpartigtl 47407 |
| Copyright terms: Public domain | W3C validator |