![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
pm2.61dne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
5 | 2, 4 | pm2.61ine 3031 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: pm2.61dane 3035 wefrc 5694 wereu2 5697 frpomin 6372 oe0lem 8569 fisupg 9352 marypha1lem 9502 fiinfg 9568 wdomtr 9644 unxpwdom2 9657 frmin 9818 fpwwe2lem12 10711 grur1a 10888 grutsk 10891 fimaxre2 12240 xlesubadd 13325 cshwidxmod 14851 sqreu 15409 pcxnn0cl 16907 pcxcl 16908 pcmpt 16939 symggen 19512 isabvd 20835 lspprat 21178 mdetralt 22635 ordtrest2lem 23232 ordthauslem 23412 comppfsc 23561 fbssint 23867 fclscf 24054 tgptsmscld 24180 ovoliunnul 25561 itg11 25745 i1fadd 25749 fta1g 26229 plydiveu 26358 fta1 26368 mulcxp 26745 cxpsqrt 26763 ostth3 27700 madebdaylemlrcut 27955 brbtwn2 28938 colinearalg 28943 clwwisshclwws 30047 ordtrest2NEWlem 33868 subfacp1lem5 35152 btwnexch2 35987 fnemeet2 36333 fnejoin2 36335 limsucncmpi 36411 areacirc 37673 sstotbnd2 37734 ssbnd 37748 prdsbnd2 37755 rrncmslem 37792 atnlt 39269 atlelt 39395 llnnlt 39480 lplnnlt 39522 lvolnltN 39575 pmapglb2N 39728 pmapglb2xN 39729 paddasslem14 39790 cdleme27a 40324 sdomne0 43375 sdomne0d 43376 iccpartigtl 47297 |
Copyright terms: Public domain | W3C validator |