![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61dne | Structured version Visualization version GIF version |
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61dne.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) |
pm2.61dne.2 | ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) |
Ref | Expression |
---|---|
pm2.61dne | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61dne.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → 𝜓)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 → 𝜓)) |
3 | pm2.61dne.2 | . . 3 ⊢ (𝜑 → (𝐴 ≠ 𝐵 → 𝜓)) | |
4 | 3 | com12 32 | . 2 ⊢ (𝐴 ≠ 𝐵 → (𝜑 → 𝜓)) |
5 | 2, 4 | pm2.61ine 3022 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2938 |
This theorem is referenced by: pm2.61dane 3026 wefrc 5682 wereu2 5685 frpomin 6362 oe0lem 8549 fisupg 9321 marypha1lem 9470 fiinfg 9536 wdomtr 9612 unxpwdom2 9625 frmin 9786 fpwwe2lem12 10679 grur1a 10856 grutsk 10859 fimaxre2 12210 xlesubadd 13301 cshwidxmod 14837 sqreu 15395 pcxnn0cl 16893 pcxcl 16894 pcmpt 16925 symggen 19502 isabvd 20829 lspprat 21172 mdetralt 22629 ordtrest2lem 23226 ordthauslem 23406 comppfsc 23555 fbssint 23861 fclscf 24048 tgptsmscld 24174 ovoliunnul 25555 itg11 25739 i1fadd 25743 fta1g 26223 plydiveu 26354 fta1 26364 mulcxp 26741 cxpsqrt 26759 ostth3 27696 madebdaylemlrcut 27951 brbtwn2 28934 colinearalg 28939 clwwisshclwws 30043 ordtrest2NEWlem 33882 subfacp1lem5 35168 btwnexch2 36004 fnemeet2 36349 fnejoin2 36351 limsucncmpi 36427 areacirc 37699 sstotbnd2 37760 ssbnd 37774 prdsbnd2 37781 rrncmslem 37818 atnlt 39294 atlelt 39420 llnnlt 39505 lplnnlt 39547 lvolnltN 39600 pmapglb2N 39753 pmapglb2xN 39754 paddasslem14 39815 cdleme27a 40349 sdomne0 43402 sdomne0d 43403 modelaxreplem1 44942 iccpartigtl 47347 |
Copyright terms: Public domain | W3C validator |