![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnf | Structured version Visualization version GIF version |
Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsnf.a | ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} |
fsetsnf.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {⟨𝑆, 𝑥⟩}) |
Ref | Expression |
---|---|
fsetsnf | ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
2 | opeq2 4869 | . . . . . . 7 ⊢ (𝑏 = 𝑥 → ⟨𝑆, 𝑏⟩ = ⟨𝑆, 𝑥⟩) | |
3 | 2 | sneqd 4635 | . . . . . 6 ⊢ (𝑏 = 𝑥 → {⟨𝑆, 𝑏⟩} = {⟨𝑆, 𝑥⟩}) |
4 | 3 | eqeq2d 2737 | . . . . 5 ⊢ (𝑏 = 𝑥 → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩})) |
5 | 4 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) ∧ 𝑏 = 𝑥) → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩})) |
6 | eqidd 2727 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩}) | |
7 | 1, 5, 6 | rspcedvd 3608 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ∃𝑏 ∈ 𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}) |
8 | snex 5424 | . . . 4 ⊢ {⟨𝑆, 𝑥⟩} ∈ V | |
9 | eqeq1 2730 | . . . . 5 ⊢ (𝑦 = {⟨𝑆, 𝑥⟩} → (𝑦 = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})) | |
10 | 9 | rexbidv 3172 | . . . 4 ⊢ (𝑦 = {⟨𝑆, 𝑥⟩} → (∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩} ↔ ∃𝑏 ∈ 𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})) |
11 | fsetsnf.a | . . . 4 ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} | |
12 | 8, 10, 11 | elab2 3667 | . . 3 ⊢ ({⟨𝑆, 𝑥⟩} ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}) |
13 | 7, 12 | sylibr 233 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → {⟨𝑆, 𝑥⟩} ∈ 𝐴) |
14 | fsetsnf.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {⟨𝑆, 𝑥⟩}) | |
15 | 13, 14 | fmptd 7108 | 1 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2703 ∃wrex 3064 {csn 4623 ⟨cop 4629 ↦ cmpt 5224 ⟶wf 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-fun 6538 df-fn 6539 df-f 6540 |
This theorem is referenced by: fsetsnf1 46316 fsetsnfo 46317 |
Copyright terms: Public domain | W3C validator |