Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnf Structured version   Visualization version   GIF version

Theorem fsetsnf 47052
Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
fsetsnf.a 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
fsetsnf.f 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
Assertion
Ref Expression
fsetsnf (𝑆𝑉𝐹:𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝐵,𝑏,𝑥,𝑦   𝑆,𝑏,𝑥,𝑦   𝑉,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑏)   𝐹(𝑥,𝑦,𝑏)   𝑉(𝑦)

Proof of Theorem fsetsnf
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑆𝑉𝑥𝐵) → 𝑥𝐵)
2 opeq2 4838 . . . . . . 7 (𝑏 = 𝑥 → ⟨𝑆, 𝑏⟩ = ⟨𝑆, 𝑥⟩)
32sneqd 4601 . . . . . 6 (𝑏 = 𝑥 → {⟨𝑆, 𝑏⟩} = {⟨𝑆, 𝑥⟩})
43eqeq2d 2740 . . . . 5 (𝑏 = 𝑥 → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩}))
54adantl 481 . . . 4 (((𝑆𝑉𝑥𝐵) ∧ 𝑏 = 𝑥) → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩}))
6 eqidd 2730 . . . 4 ((𝑆𝑉𝑥𝐵) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩})
71, 5, 6rspcedvd 3590 . . 3 ((𝑆𝑉𝑥𝐵) → ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})
8 snex 5391 . . . 4 {⟨𝑆, 𝑥⟩} ∈ V
9 eqeq1 2733 . . . . 5 (𝑦 = {⟨𝑆, 𝑥⟩} → (𝑦 = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}))
109rexbidv 3157 . . . 4 (𝑦 = {⟨𝑆, 𝑥⟩} → (∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩} ↔ ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}))
11 fsetsnf.a . . . 4 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
128, 10, 11elab2 3649 . . 3 ({⟨𝑆, 𝑥⟩} ∈ 𝐴 ↔ ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})
137, 12sylibr 234 . 2 ((𝑆𝑉𝑥𝐵) → {⟨𝑆, 𝑥⟩} ∈ 𝐴)
14 fsetsnf.f . 2 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
1513, 14fmptd 7086 1 (𝑆𝑉𝐹:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {csn 4589  cop 4595  cmpt 5188  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  fsetsnf1  47053  fsetsnfo  47054
  Copyright terms: Public domain W3C validator