![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnf | Structured version Visualization version GIF version |
Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsnf.a | ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} |
fsetsnf.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {⟨𝑆, 𝑥⟩}) |
Ref | Expression |
---|---|
fsetsnf | ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
2 | opeq2 4879 | . . . . . . 7 ⊢ (𝑏 = 𝑥 → ⟨𝑆, 𝑏⟩ = ⟨𝑆, 𝑥⟩) | |
3 | 2 | sneqd 4644 | . . . . . 6 ⊢ (𝑏 = 𝑥 → {⟨𝑆, 𝑏⟩} = {⟨𝑆, 𝑥⟩}) |
4 | 3 | eqeq2d 2739 | . . . . 5 ⊢ (𝑏 = 𝑥 → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩})) |
5 | 4 | adantl 480 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) ∧ 𝑏 = 𝑥) → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩})) |
6 | eqidd 2729 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩}) | |
7 | 1, 5, 6 | rspcedvd 3613 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ∃𝑏 ∈ 𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}) |
8 | snex 5437 | . . . 4 ⊢ {⟨𝑆, 𝑥⟩} ∈ V | |
9 | eqeq1 2732 | . . . . 5 ⊢ (𝑦 = {⟨𝑆, 𝑥⟩} → (𝑦 = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})) | |
10 | 9 | rexbidv 3176 | . . . 4 ⊢ (𝑦 = {⟨𝑆, 𝑥⟩} → (∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩} ↔ ∃𝑏 ∈ 𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})) |
11 | fsetsnf.a | . . . 4 ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {⟨𝑆, 𝑏⟩}} | |
12 | 8, 10, 11 | elab2 3673 | . . 3 ⊢ ({⟨𝑆, 𝑥⟩} ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}) |
13 | 7, 12 | sylibr 233 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → {⟨𝑆, 𝑥⟩} ∈ 𝐴) |
14 | fsetsnf.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {⟨𝑆, 𝑥⟩}) | |
15 | 13, 14 | fmptd 7129 | 1 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2705 ∃wrex 3067 {csn 4632 ⟨cop 4638 ↦ cmpt 5235 ⟶wf 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-fun 6555 df-fn 6556 df-f 6557 |
This theorem is referenced by: fsetsnf1 46463 fsetsnfo 46464 |
Copyright terms: Public domain | W3C validator |