![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnf | Structured version Visualization version GIF version |
Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsnf.a | ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} |
fsetsnf.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) |
Ref | Expression |
---|---|
fsetsnf | ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
2 | opeq2 4879 | . . . . . . 7 ⊢ (𝑏 = 𝑥 → 〈𝑆, 𝑏〉 = 〈𝑆, 𝑥〉) | |
3 | 2 | sneqd 4643 | . . . . . 6 ⊢ (𝑏 = 𝑥 → {〈𝑆, 𝑏〉} = {〈𝑆, 𝑥〉}) |
4 | 3 | eqeq2d 2746 | . . . . 5 ⊢ (𝑏 = 𝑥 → ({〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉} ↔ {〈𝑆, 𝑥〉} = {〈𝑆, 𝑥〉})) |
5 | 4 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) ∧ 𝑏 = 𝑥) → ({〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉} ↔ {〈𝑆, 𝑥〉} = {〈𝑆, 𝑥〉})) |
6 | eqidd 2736 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑥〉}) | |
7 | 1, 5, 6 | rspcedvd 3624 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ∃𝑏 ∈ 𝐵 {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉}) |
8 | snex 5442 | . . . 4 ⊢ {〈𝑆, 𝑥〉} ∈ V | |
9 | eqeq1 2739 | . . . . 5 ⊢ (𝑦 = {〈𝑆, 𝑥〉} → (𝑦 = {〈𝑆, 𝑏〉} ↔ {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉})) | |
10 | 9 | rexbidv 3177 | . . . 4 ⊢ (𝑦 = {〈𝑆, 𝑥〉} → (∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉} ↔ ∃𝑏 ∈ 𝐵 {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉})) |
11 | fsetsnf.a | . . . 4 ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} | |
12 | 8, 10, 11 | elab2 3685 | . . 3 ⊢ ({〈𝑆, 𝑥〉} ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐵 {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉}) |
13 | 7, 12 | sylibr 234 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → {〈𝑆, 𝑥〉} ∈ 𝐴) |
14 | fsetsnf.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) | |
15 | 13, 14 | fmptd 7134 | 1 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 {csn 4631 〈cop 4637 ↦ cmpt 5231 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: fsetsnf1 47002 fsetsnfo 47003 |
Copyright terms: Public domain | W3C validator |