Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnf Structured version   Visualization version   GIF version

Theorem fsetsnf 46462
Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
fsetsnf.a 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
fsetsnf.f 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
Assertion
Ref Expression
fsetsnf (𝑆𝑉𝐹:𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝐵,𝑏,𝑥,𝑦   𝑆,𝑏,𝑥,𝑦   𝑉,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑏)   𝐹(𝑥,𝑦,𝑏)   𝑉(𝑦)

Proof of Theorem fsetsnf
StepHypRef Expression
1 simpr 483 . . . 4 ((𝑆𝑉𝑥𝐵) → 𝑥𝐵)
2 opeq2 4879 . . . . . . 7 (𝑏 = 𝑥 → ⟨𝑆, 𝑏⟩ = ⟨𝑆, 𝑥⟩)
32sneqd 4644 . . . . . 6 (𝑏 = 𝑥 → {⟨𝑆, 𝑏⟩} = {⟨𝑆, 𝑥⟩})
43eqeq2d 2739 . . . . 5 (𝑏 = 𝑥 → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩}))
54adantl 480 . . . 4 (((𝑆𝑉𝑥𝐵) ∧ 𝑏 = 𝑥) → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩}))
6 eqidd 2729 . . . 4 ((𝑆𝑉𝑥𝐵) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩})
71, 5, 6rspcedvd 3613 . . 3 ((𝑆𝑉𝑥𝐵) → ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})
8 snex 5437 . . . 4 {⟨𝑆, 𝑥⟩} ∈ V
9 eqeq1 2732 . . . . 5 (𝑦 = {⟨𝑆, 𝑥⟩} → (𝑦 = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}))
109rexbidv 3176 . . . 4 (𝑦 = {⟨𝑆, 𝑥⟩} → (∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩} ↔ ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}))
11 fsetsnf.a . . . 4 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
128, 10, 11elab2 3673 . . 3 ({⟨𝑆, 𝑥⟩} ∈ 𝐴 ↔ ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})
137, 12sylibr 233 . 2 ((𝑆𝑉𝑥𝐵) → {⟨𝑆, 𝑥⟩} ∈ 𝐴)
14 fsetsnf.f . 2 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
1513, 14fmptd 7129 1 (𝑆𝑉𝐹:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {cab 2705  wrex 3067  {csn 4632  cop 4638  cmpt 5235  wf 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-fun 6555  df-fn 6556  df-f 6557
This theorem is referenced by:  fsetsnf1  46463  fsetsnfo  46464
  Copyright terms: Public domain W3C validator