Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnf Structured version   Visualization version   GIF version

Theorem fsetsnf 44545
Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
fsetsnf.a 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
fsetsnf.f 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
Assertion
Ref Expression
fsetsnf (𝑆𝑉𝐹:𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝐵,𝑏,𝑥,𝑦   𝑆,𝑏,𝑥,𝑦   𝑉,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑏)   𝐹(𝑥,𝑦,𝑏)   𝑉(𝑦)

Proof of Theorem fsetsnf
StepHypRef Expression
1 simpr 485 . . . 4 ((𝑆𝑉𝑥𝐵) → 𝑥𝐵)
2 opeq2 4805 . . . . . . 7 (𝑏 = 𝑥 → ⟨𝑆, 𝑏⟩ = ⟨𝑆, 𝑥⟩)
32sneqd 4573 . . . . . 6 (𝑏 = 𝑥 → {⟨𝑆, 𝑏⟩} = {⟨𝑆, 𝑥⟩})
43eqeq2d 2749 . . . . 5 (𝑏 = 𝑥 → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩}))
54adantl 482 . . . 4 (((𝑆𝑉𝑥𝐵) ∧ 𝑏 = 𝑥) → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩}))
6 eqidd 2739 . . . 4 ((𝑆𝑉𝑥𝐵) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩})
71, 5, 6rspcedvd 3563 . . 3 ((𝑆𝑉𝑥𝐵) → ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})
8 snex 5354 . . . 4 {⟨𝑆, 𝑥⟩} ∈ V
9 eqeq1 2742 . . . . 5 (𝑦 = {⟨𝑆, 𝑥⟩} → (𝑦 = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}))
109rexbidv 3226 . . . 4 (𝑦 = {⟨𝑆, 𝑥⟩} → (∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩} ↔ ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}))
11 fsetsnf.a . . . 4 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
128, 10, 11elab2 3613 . . 3 ({⟨𝑆, 𝑥⟩} ∈ 𝐴 ↔ ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})
137, 12sylibr 233 . 2 ((𝑆𝑉𝑥𝐵) → {⟨𝑆, 𝑥⟩} ∈ 𝐴)
14 fsetsnf.f . 2 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
1513, 14fmptd 6988 1 (𝑆𝑉𝐹:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  {csn 4561  cop 4567  cmpt 5157  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  fsetsnf1  44546  fsetsnfo  44547
  Copyright terms: Public domain W3C validator