Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnf | Structured version Visualization version GIF version |
Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
fsetsnf.a | ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} |
fsetsnf.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) |
Ref | Expression |
---|---|
fsetsnf | ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
2 | opeq2 4805 | . . . . . . 7 ⊢ (𝑏 = 𝑥 → 〈𝑆, 𝑏〉 = 〈𝑆, 𝑥〉) | |
3 | 2 | sneqd 4573 | . . . . . 6 ⊢ (𝑏 = 𝑥 → {〈𝑆, 𝑏〉} = {〈𝑆, 𝑥〉}) |
4 | 3 | eqeq2d 2749 | . . . . 5 ⊢ (𝑏 = 𝑥 → ({〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉} ↔ {〈𝑆, 𝑥〉} = {〈𝑆, 𝑥〉})) |
5 | 4 | adantl 482 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) ∧ 𝑏 = 𝑥) → ({〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉} ↔ {〈𝑆, 𝑥〉} = {〈𝑆, 𝑥〉})) |
6 | eqidd 2739 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑥〉}) | |
7 | 1, 5, 6 | rspcedvd 3563 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ∃𝑏 ∈ 𝐵 {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉}) |
8 | snex 5354 | . . . 4 ⊢ {〈𝑆, 𝑥〉} ∈ V | |
9 | eqeq1 2742 | . . . . 5 ⊢ (𝑦 = {〈𝑆, 𝑥〉} → (𝑦 = {〈𝑆, 𝑏〉} ↔ {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉})) | |
10 | 9 | rexbidv 3226 | . . . 4 ⊢ (𝑦 = {〈𝑆, 𝑥〉} → (∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉} ↔ ∃𝑏 ∈ 𝐵 {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉})) |
11 | fsetsnf.a | . . . 4 ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} | |
12 | 8, 10, 11 | elab2 3613 | . . 3 ⊢ ({〈𝑆, 𝑥〉} ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐵 {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉}) |
13 | 7, 12 | sylibr 233 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → {〈𝑆, 𝑥〉} ∈ 𝐴) |
14 | fsetsnf.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) | |
15 | 13, 14 | fmptd 6988 | 1 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 {csn 4561 〈cop 4567 ↦ cmpt 5157 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 |
This theorem is referenced by: fsetsnf1 44546 fsetsnfo 44547 |
Copyright terms: Public domain | W3C validator |