| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsetsnf | Structured version Visualization version GIF version | ||
| Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| fsetsnf.a | ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} |
| fsetsnf.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) |
| Ref | Expression |
|---|---|
| fsetsnf | ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 2 | opeq2 4855 | . . . . . . 7 ⊢ (𝑏 = 𝑥 → 〈𝑆, 𝑏〉 = 〈𝑆, 𝑥〉) | |
| 3 | 2 | sneqd 4618 | . . . . . 6 ⊢ (𝑏 = 𝑥 → {〈𝑆, 𝑏〉} = {〈𝑆, 𝑥〉}) |
| 4 | 3 | eqeq2d 2747 | . . . . 5 ⊢ (𝑏 = 𝑥 → ({〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉} ↔ {〈𝑆, 𝑥〉} = {〈𝑆, 𝑥〉})) |
| 5 | 4 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) ∧ 𝑏 = 𝑥) → ({〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉} ↔ {〈𝑆, 𝑥〉} = {〈𝑆, 𝑥〉})) |
| 6 | eqidd 2737 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → {〈𝑆, 𝑥〉} = {〈𝑆, 𝑥〉}) | |
| 7 | 1, 5, 6 | rspcedvd 3608 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → ∃𝑏 ∈ 𝐵 {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉}) |
| 8 | snex 5411 | . . . 4 ⊢ {〈𝑆, 𝑥〉} ∈ V | |
| 9 | eqeq1 2740 | . . . . 5 ⊢ (𝑦 = {〈𝑆, 𝑥〉} → (𝑦 = {〈𝑆, 𝑏〉} ↔ {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉})) | |
| 10 | 9 | rexbidv 3165 | . . . 4 ⊢ (𝑦 = {〈𝑆, 𝑥〉} → (∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉} ↔ ∃𝑏 ∈ 𝐵 {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉})) |
| 11 | fsetsnf.a | . . . 4 ⊢ 𝐴 = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = {〈𝑆, 𝑏〉}} | |
| 12 | 8, 10, 11 | elab2 3666 | . . 3 ⊢ ({〈𝑆, 𝑥〉} ∈ 𝐴 ↔ ∃𝑏 ∈ 𝐵 {〈𝑆, 𝑥〉} = {〈𝑆, 𝑏〉}) |
| 13 | 7, 12 | sylibr 234 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → {〈𝑆, 𝑥〉} ∈ 𝐴) |
| 14 | fsetsnf.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ {〈𝑆, 𝑥〉}) | |
| 15 | 13, 14 | fmptd 7109 | 1 ⊢ (𝑆 ∈ 𝑉 → 𝐹:𝐵⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 {csn 4606 〈cop 4612 ↦ cmpt 5206 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: fsetsnf1 47061 fsetsnfo 47062 |
| Copyright terms: Public domain | W3C validator |