Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsetsnf Structured version   Visualization version   GIF version

Theorem fsetsnf 47001
Description: The mapping of an element of a class to a singleton function is a function. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
fsetsnf.a 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
fsetsnf.f 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
Assertion
Ref Expression
fsetsnf (𝑆𝑉𝐹:𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝐵,𝑏,𝑥,𝑦   𝑆,𝑏,𝑥,𝑦   𝑉,𝑏,𝑥
Allowed substitution hints:   𝐴(𝑦,𝑏)   𝐹(𝑥,𝑦,𝑏)   𝑉(𝑦)

Proof of Theorem fsetsnf
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑆𝑉𝑥𝐵) → 𝑥𝐵)
2 opeq2 4879 . . . . . . 7 (𝑏 = 𝑥 → ⟨𝑆, 𝑏⟩ = ⟨𝑆, 𝑥⟩)
32sneqd 4643 . . . . . 6 (𝑏 = 𝑥 → {⟨𝑆, 𝑏⟩} = {⟨𝑆, 𝑥⟩})
43eqeq2d 2746 . . . . 5 (𝑏 = 𝑥 → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩}))
54adantl 481 . . . 4 (((𝑆𝑉𝑥𝐵) ∧ 𝑏 = 𝑥) → ({⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩}))
6 eqidd 2736 . . . 4 ((𝑆𝑉𝑥𝐵) → {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑥⟩})
71, 5, 6rspcedvd 3624 . . 3 ((𝑆𝑉𝑥𝐵) → ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})
8 snex 5442 . . . 4 {⟨𝑆, 𝑥⟩} ∈ V
9 eqeq1 2739 . . . . 5 (𝑦 = {⟨𝑆, 𝑥⟩} → (𝑦 = {⟨𝑆, 𝑏⟩} ↔ {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}))
109rexbidv 3177 . . . 4 (𝑦 = {⟨𝑆, 𝑥⟩} → (∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩} ↔ ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩}))
11 fsetsnf.a . . . 4 𝐴 = {𝑦 ∣ ∃𝑏𝐵 𝑦 = {⟨𝑆, 𝑏⟩}}
128, 10, 11elab2 3685 . . 3 ({⟨𝑆, 𝑥⟩} ∈ 𝐴 ↔ ∃𝑏𝐵 {⟨𝑆, 𝑥⟩} = {⟨𝑆, 𝑏⟩})
137, 12sylibr 234 . 2 ((𝑆𝑉𝑥𝐵) → {⟨𝑆, 𝑥⟩} ∈ 𝐴)
14 fsetsnf.f . 2 𝐹 = (𝑥𝐵 ↦ {⟨𝑆, 𝑥⟩})
1513, 14fmptd 7134 1 (𝑆𝑉𝐹:𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wrex 3068  {csn 4631  cop 4637  cmpt 5231  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  fsetsnf1  47002  fsetsnfo  47003
  Copyright terms: Public domain W3C validator